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ABSTRACT 
Representing programs as text strings makes programming harder 
then it has to be. The source text of a program is far removed 
from its behavior. Bridging this conceptual gulf is what makes 
programming so inhumanly difficult – we are not compilers. 
Subtext is a new medium in which the representation of a program 
is the same thing as its execution. Like a spreadsheet, a program 
is visible and alive, constantly executing even as it is edited. 
Program edits are coherent semantic transformations.  

The essence of this new medium is copying. Programs are 
constructed by copying and executed by copy flow: the projection 
of changes through copies. The simple idea of copying develops 
into a rich theory of higher-order continual copying of trees. 
Notably absent are symbolic names, the workhorse of textual 
notation, replaced by immediately-bound explicit relationships. 
Subtext unifies traditionally distinct programming tools and 
concepts, and enables some novel ones. Ancestral structures are a 
new primitive data type that combines the features of lists and 
records, along with unproblematic multiple inheritance. Adaptive 
conditionals use first-class program edits to dynamically adapt 
behavior. 

A prototype implementation shows promise, but calls for much 
further research. Subtext suggests that we can make programming 
radically easier, if we are willing to be radical. 

Categories and Subject Descriptors 
D.1.7 [Programming Techniques]: Visual Programming; D.1.1 
[Programming Techniques]: Functional Programming; D.2.6 
[Software Engineering]: Programming Environments – 
interactive environments, graphical environments; D.2.3 
[Software Engineering]: Coding Tools and Techniques – 
program editors; H.5.2 [Information Interfaces and 
Presentation]: User Interfaces – interaction styles. 

General Terms 
Human Factors, Languages 

Keywords 
Non-textual programming, visual programming, prototypes, 
copying. 

1. INTRODUCTION 
Programming is inhumanly hard. It stretches our mental abilities 
past their natural limits. The extraordinary difficulty of 
programming causes or aggravates all the chronic ills of software 
development. Programming does not need to be so hard. 

Making things easy for people is the study of usability. Donald 
Norman [29] identified two basic usability problems: the Gulfs of 
Execution and Evaluation. The Gulf of Execution is the difficulty 
of translating a desired goal into an action to be executed. The 
Gulf of Evaluation is the difficulty of determining whether an 
observable state meets the desired goals. These gulfs loom vast 
for programming languages, because programs are represented as 
text strings. 

The Gulf of Evaluation arises when we try to understand a 
program by readings its source text, a task so complex that only 
computers can do it reliably. Compilation is an intricate global 
analysis, and execution requires huge stores of memory. Testing 
and debugging tools give us only brief glimpses across the gulf. 
Preceding work on Example Centric Programming [11] proposed 
using examples to help comprehend program execution, but was 
severely constrained by the abstract nature of text. 

Matters are no better when we turn to the Gulf of Execution. The 
affordances offered by text – inserting and deleting characters – 
are meaningless on their own. Most of the possible editing 
changes we can make leave the program invalid. Most interesting 
changes in semantics require delicately coordinated edits in 
widespread locations. The increasingly popular practice of unit 
testing [3] asserts that we cannot trust even simple changes 
without testing them automatically. 

Norman’s two gulfs arise when there is a mismatch between 
physical representation and conceptual meaning. A major reason 
that programming is so hard is that text strings are a poor 
representation for programs. 

Text is paper-centric: pen and paper are a complete 
implementation. Modern software technology allows us to create 
arbitrary computer-based media, free of the limits of paper. A 
program can be represented in an abstract data model, and the 
programmer can use a GUI to directly manipulate [33] that model: 
WYSIWYG programming. This has long been done with other 
complex information artifacts, such as spreadsheets, documents, 
and diagrams. In all these cases, we no longer expect a paper 
printout to be a complete representation. It is time to transcend 
paper-centric programming.  

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 

There have been a number of attempts to escape the limitations of 
textual programming, notably visual programming languages and 
syntax-directed editing. These efforts are discussed in §5 (Related OOPSLA’05, October 16–20, 2005, San Diego, California, USA. 
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Work), where it is argued that they stayed largely within the 
margins of paper. 

Subtext is an experiment to develop a paper-free medium of 
programming, one designed for usability. In this medium the 
representation of a program is the same thing as its execution. 
Aligning syntax and semantics narrows the conceptual gulfs of 
programming. The experience of programming becomes more 
akin to using a spreadsheet than a keypunch. This medium is 
based upon a single unifying concept: copying; which develops  
into a rich substrate for the entire process of programming. 

2. A BRIEF TOUR OF SUBTEXT 
To discuss the design of Subtext, and the theory that underlies it, 
we will first introduce the basic features of the research prototype. 
This prototype is implemented in Java and SWT. It is only a proof 
of concept, lacking many niceties.  

The graphical and interactive features of the user interface (UI) 
are essential to the experience of Subtext, so it is difficult to 
convey an accurate impression with only prose and a few 
screenshots. The interested reader is encouraged to view the 18 
minute video at http://subtextual.org/demo1.html instead of 
reading this section. An online version of this paper, including 
full-color screenshots, is at http://subtextual.org/OOPSLA05.pdf. 

All code and data in Subtext is organized into a single tree of 
nodes. There are two types of nodes: structures and references. 
The structures form the tree: each structure is said to contain the 
nodes below it in the tree, which are called its subnodes. The 
subnodes of a structure are ordered. Every node has exactly one 
container structure (except the root node, which has no 
container). At the leaves of the tree are empty structures and 
references. Empty structures are often used as “atomic values”. A 
reference is a pointer to another node, called its value. 

Every node has a label, which is a string. The labels on the 
subnodes of a structure make it look like a traditional record, but 
as will be explained in §4.3, labels are purely comments, not 
identifiers. Subtext supplies primitive data types like the Booleans 
and integers, each of which is a structure containing all values of 
the type. Each primitive value is an empty structure whose label is 
an appropriate print string. For example, the integers are labeled 
with decimal strings, and are contained in the correct order in the 
Integers structure. The integers are properly infinite. 

The Subtext user interface is primarily based on views of the tree 
of nodes, using an outline metaphor (often called a tree widget). A 
window can be opened on any sub-tree, and within that window, 
structures can be hierarchically expanded or collapsed. An 
expanded structure shows its subnodes indented on the following 
lines.  

Figure 1 shows a window based at the root of the tree, expanded 
to show the contents of Booleans and Employee. The Functions 
structure shows an expansion affordance activated by the 
proximity of the mouse. The Employee structure contains two 
subnodes, salary and deductions, which are references. Their 
values are displayed to their right, shaded in blue.  

expanded structure

reference

value (blue)  

collapsed structure

popup expand/collapse affordance
 

Figure 1. Tree outline 

2.1 Functions 
Functions are structures that react to change. In Figure 2, the Sum 
function contains 3 subnodes, labeled first, second, and =, which 
are respectively its two arguments and result. Changing either of 
the two arguments will cause the result to automatically change to 
contain their sum. This happens essentially by magic, because 
Sum is a primitive built-in function. 

collapsed function

expanded function

 
Figure 2. Functions 

The arguments and result(s) of a function are labeled nodes like in 
a record. This is similar to keyword arguments in some languages. 
But note the collapsed form of the Difference function: the labels 
of the arguments are hidden, and the result node is moved to the 
right of the parentheses. There is a convention that the first, 
second, … = nodes should be presented in this more familiar 
mathematical style when the structure is collapsed. This 
convention is a user-selectable option that can be altered globally 
or locally.  

2.2 Creation by Copying 
New nodes are created in only one way: by copying. An existing 
node is copied to some position within an existing structure. If the 
original node is a structure, its entire sub-tree of nodes is copied 
along with it. Copying is initiated by the programmer with drag-
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and-drop operations (or copy-and-paste, which has not yet been 
implemented). Copying is used to both instantiate data structures 
and call functions, which are actually the same thing in Subtext. 
The original definition of a function or data structure that serves 
as a template for copying is referred to as its prototype.  

To see how functions are called, we will add some behavior to the 
Employee structure. We will calculate payroll as the difference 
between salary and deductions. We create the payroll node by 
dragging a copy of one of the other nodes and editing its label. 
We call the Difference function by also dragging a copy of it into 
the data structure.  

2.3 Links 
The final step of this example is to link the arguments and result 
of the function to the nodes of the data structure. Recall that a 
reference is a pointer to another node, called its value. Links 
control the values of references. A reference is always linked to 
exactly one other node, called its source. If it is linked to a 
structure, then that structure is its value, and the reference is 
called a constant. All the primitive values are empty structures, so 
any reference to them is a constant. If a reference is instead linked 
to another reference, it is called a variable. The value of a 
variable is the same as the value of its source. In other words, 
variable links are chased until a constant is found. Links are 
reactive: if the value of a reference changes, all of the references 
linked to it change their values along with it. 

Continuing with the example, we need to make three links, 
connecting the arguments and result of the Difference function to 
the data nodes of Employee. Linking is initiated like copying, 
through drag-and-drop or cut-and-paste. Drag-and-drop 
operations draw a rubber band to visualize the link being 
established. Primitive values can be also be linked with in-place 
keyboard editing. Figure 3 shows the result after having made the 
needed links. The Employee structure now automatically 
calculates the value of the payroll node as the difference of salary 
and deductions, and recalculates automatically whenever they 
change. This data structure now acts like a function: you change it 
and it changes in response. Note how every intermediate value of 
the computation is visible, and the internal execution of the call of 
Difference can be made visible by expanding it.  

source compass

value

popup vector (red) link (blue)
 

Figure 3. Linking 

Figure 3 shows some of the options for presenting links in 
Subtext. Every reference node displays its value. If the reference 
is a variable, the source is also displayed, controlled by a number 
of options. For example, a link to an = node can substitute the 
label of the containing function, as shown in the payroll node, 
whose source presents as Difference. 

Following the source label is a circular widget called a compass. 
The compass has an indicator tick oriented in the direction of the 
source node. Compasses avoid the visual confusion that would 
result if all links were displayed as vectors drawn between nodes, 
as some visual languages have attempted. Instead, vectors are 
drawn selectively and interactively. When the mouse is over a 
link, the compass indicator extends into a vector reaching all the 
way to the source node, as shown for the link from salary. This 
interactive revelation of links is more effective than can be 
conveyed in text or video; you need to be driving the mouse to 
fully appreciate it.  

There are many further options for representing links. For 
example, groups of related links can be vectorized together. The 
presentation of links is crucial to the usability of Subtext, as 
discussed further below. 

2.4 Calling by Copying 
The Difference function was called by making a copy of its 
prototype. The internal structure and behavior of the function was 
duplicated in the copy. Likewise, if a new instance of the 
Employee structure is created, it will duplicate all the internal 
structure and linkages, including another copy of Difference, and 
thus replicating the automatic calculation behavior of payroll. 
Copying a node copies the entire subtree of contained nodes and 
preserves the internal structure of the links between them.  

What if the payroll calculation changes after Employee instances 
have been created? Or what if the internal implementation of 
Difference changes? These changes will be propagated 
automatically to all the affected copies. 

2.5 Conditionals and Recursion 
Figure 4 shows a recursive factorial function. Recursion – a 
function calling itself – is done by just copying the function into 
itself. This creates an infinitely deep tree, which is tolerated 
because copying is materialized lazily. Projection of values down 
links triggers copying on demand. Infinite recursion is stopped by 
putting a maximal depth on structures, analogous to an execution 
stack limit, and returning an error value on links that traverse this 
boundary. 

dead (gray background)

defaulted (green)

 
Figure 4. Factorial 

Note how the second arguments of Difference and Equality are 
green. This indicates that they have been defaulted from the 
prototypes of those functions. Calling as copying provides 
defaulting on all arguments. 

Conditionals are built with the Choice primitive function, which 
has 4 subnodes: if, then, else, =. In the conventional manner, the if 
argument is a Boolean, which selects either the then or else 
argument, returning it in =. Conditionals help visualize their 
operation by graying-out either the then or else argument, 

 



 

whichever was not chosen, as seen in the then node in Figure 4. 
The gray background indicates the node is dead: its value does 
not contribute to the result of the function.  

Death is infectious – it propagates into the linked sources of a 
dead node, unless they are resuscitated by a link from a live node. 
This is shown in Figure 5, where the first recursive call has been 
expanded. It does not need to recurse, and so the else argument is 
dead. That else is linked to further recursion, which is shown 
executing, unboundedly, and returning the Too deep! error. But 
this error is irrelevant because the conditional is ignoring it, and 
the looping code is shown as dead. This behavior is similar to a 
non-strict lazy functional language.  

 
Figure 5. Factorial recursion 

3. PRINCIPLES OF SUBTEXT 
Having introduced the basic features of Subtext, we can now 
discuss the principles behind its design, which are all oriented 
towards making programming easier. 

3.1 Language Extension through Presentation 
Subtext introduces a new way to extend programming languages: 
presentations, which offer alternative ways to view and edit 
aspects of the program. We have already seen an example of this, 
in the way that the first, second, … = nodes of a collapsed 
function can be laid out mathematically. Presentations can be 
controlled from property sheets attached to nodes. Only the user 
interface is extended to support presentations, not the underlying 
semantics of Subtext, nor the programs themselves. Presentations 
are like syntactic stylesheets for programs. 

A more significant example is nesting. Traditional syntax-based 
languages have two kinds of data flow. One kind uses expression 
nesting to encode the flow of return values up a tree of 
expressions. The other kind of data flow cross-cuts the expression 
tree via variable assignment and reference. It is often necessary to 
translate between these two different forms. When an expression 
value is needed in more than one place, it must be de-nested and 
assigned to a variable. Variables are also introduced when 
expressions become nested too deeply to be understood. Nesting 
further requires that expressions have only one value. This 
constraint becomes awkward in many situations, leading to multi-
value wrappers, or communication through side-effects. Subtext 
avoids these problems with a single kind of data flow that 
supports an arbitrary graph structure. New edges (links) can be 
added to the graph without introducing local variables, refactoring 
code, or bundling values. 

However a tree-structured data flow is a very common pattern, 
and the mathematically inspired convention of nested expressions 
is both deeply entrenched and highly expressive. To exploit these 
benefits, Subtext offers expression nesting as a presentation 
option. Any reference to the = node of a function can be nested by 
clicking on the link. The referenced function is then embedded in 
place of the link, surrounded by square brackets. Figure 6 shows 
the result of nesting the function call in Figure 3. Clicking on one 
of the square brackets de-nests the function. Nesting does not 
require a strictly tree-structured data flow, it merely allows the 
programmer to designate a spanning tree within the graph to be 
represented with bracketing. 

nested function  
Figure 6. Nesting 

Nesting provides the best of both worlds: the generality and 
flexibility of graph-structured data flow with the 
expressiveness and familiarity of tree-structured data flow. It 
does this unobtrusively in the user interface. In textual languages, 
such matters are typically permanent commitments made in the 
basic design of a language, and thus fraught with dilemmas.  

Textual languages support extension through macros and layered 
translation. These techniques are highly disruptive, because the 
entire development tool-chain is affected, as are all the 
programmers, like it or not. Subtext gracefully sidesteps these 
problems because of the clean separation of concerns between the 
internal model of a program and its external user interface. 
Textual representations conflate these issues, forcing the compiler 
and the programmer to work with exactly the same representation.  

Presentations avoid dilemmas of textual language design and 
extension by offering checkboxes on a stylesheet. 

3.2 What’s in a Name? 
Symbolic names are the workhorses of programming languages. 
They carry the burden of everything not implied by grammatical 
structure. Names serve many masters, but none of them well. 
Names are used to: 

1. Establish relationships between points in the program, by 
repeating the same spelling. Constantly inventing pithy 
unique names is burdensome. Misspellings and homonyms 
easily disrupt name-based relationships. Renaming is 
undecidable in the presence of reflection. 

2. Implement abstractions, by delaying the binding of same-
spelled names until compile-time or run-time. Much 
language semantics is smuggled in through arcane binding 
rules, for example method dispatch in OO. Delayed binding 
makes relationships implicit and contingent, obscuring them 
from the programmer. 

3. Serve as comments and mnemonic aids.  
The otherUsesOfNames interfereWith this 
English.Noun.Purpose. 

 



 

Subtext separates the uses of names into distinct mechanisms 
tailored to their purpose. The first purpose of names is to 
establish relationships. In Subtext, relationships are explicit, 
immediately-bound links within programs. These relationships are 
directly captured during editing in Subtext’s internal database, 
without recourse to names. Every label could be foo, confusing 
the programmer no end, but not the computer. Textual 
programming requires the constant invention of unique names just 
to create structure, a burden that is lifted in Subtext.  

3.2.1 Abstraction without Indirection 
The second purpose of names is to support abstraction through 
delayed binding. Consider the primordial form of abstraction in 
programming languages: function calls. A function is represented 
by a symbolic name, which is resolved at compile-time or later 
into the function’s definition. The definition can change at any 
time prior to binding. The arguments of the function are bound at 
call-time, so that they are free to change up till then. 

In Subtext, a function call is immediately in-lined at edit-time, so 
that its definition is explicit and visible. If the definition of the 
function changes, those changes are globally replicated to all the 
inlined copies. The arguments of the function are also bound 
during editing, so that its execution is explicit and visible. If the 
values of the arguments change, the function recomputes as 
needed. 

Functional abstraction is thus achieved without hiding meaning 
behind the delayed binding of an indirect reference. This principle 
is called abstraction without indirection. It is made possible by 
the ability of the program representation to automatically react to 
change. Abstraction does not need to be obscured by 
indirection and deferral – that is only necessary in static 
notations that can not react to change. Other examples of this 
principle in Subtext are the elimination of symbolic node names 
(§4.3), and higher-order functions (§4.5). 

3.2.2 The Efficiency of Ambiguity 
The third and final purpose of names is to serve as comments and 
mnemonic aids. These are matters of human communication and 
understanding, quite different from the needs of compilers and 
interpreters. Subtext frees names of their other burdens so as to 
optimize them for this purpose, and amplifies them through user 
interface techniques. Names are too rich in meaning to waste 
on talking to compilers. 

The use of names in natural languages is quite different from that 
in programming languages. The vocabulary of natural languages 
is relatively fixed, and ambiguous overloading is common. 
Anaphoric abbreviation (e.g., a pronoun) is routine. Humans are 
highly skilled at disambiguating from context. There is a good 
reason for this: ambiguity increases the bandwidth of 
communication. Any information that can be inferred 
contextually by the listener is redundant.  

Subtext exploits the human ability for contextual 
disambiguation to increase the bandwidth of programming. 
Links display the label of their source node to help the 
programmer understand or remember the link. These labels will 
often not be unique, but still perfectly clear from context, and 
more succinct than globally unique names would be. Presentation 
options allow the programmer to tune for the desired level of 

ambiguity, ranging from a fully-qualified containment tree path 
(with subscripting of homonyms), all the way down to elision into 
pronouns like that (referring to the prior = node).  

Ambiguity is most effective in human communication during a 
conversation, when questions can be asked. Subtext offers 
interactive disambiguation through the mouse. Mousing over a 
link causes its compass to extend into a vector to the source node. 
Hovering the mouse over a link can open a “tool tip” popup with 
the full containment path of the source and a small display of its 
container context. A mouse gesture can open another window on 
the source node. 

The planned keyboard interface for link editing also exploits the 
efficiency of ambiguity. Drag-and-drop is a convenient way to 
make a link when the desired source is visible, or can easily be 
browsed to. In other situations, typing a name on the keyboard 
may be more efficient. There is a useful analogy with web 
browsing. A textual language expects you to type in the one true 
unique name, much like a URL. Subtext will be more like using 
Google – names will be used as search keys, with the hits ranked 
and contextually summarized for easy recognition and selection.  

Subtext provides an interactive medium that establishes 
meaning conversationally.  

3.3 Overt Semantics 
The Gulf of Evaluation is the difficulty of understanding what a 
program does from its source representation. The standard textual 
representation of a program is far removed from its run-time 
behavior. Subtext seeks to narrow this gap by using a different 
medium of representation. Every node always has a value, and 
every function is a living example of its execution. Static and 
dynamic aspects are intertwined, and there is no difference 
between edit-time and run-time. This is reminiscent of the way 
spreadsheets work, except that even spreadsheets hide the internal 
workings of their formulas, whereas Subtext is transparent all the 
way down.  

The full meaning of a program is the set of all its possible 
executions. In Subtext, every execution of a program is a 
structurally equivalent projection of it, in which specific values 
change but the structure remains intact. The single example 
demonstrated by the program’s definition is thus a revealing 
exemplar of its full meaning. This design principle is called overt 
semantics. 

Overt semantics dispels the mystery of debugging. There is no 
need to guess at what happened inside the black box of run-time: 
debugging becomes merely browsing the erroneous execution, 
which is a copy of the program. 

Overt semantics is an application of the proven power of 
examples to elucidate abstractions, as called for in the prior work 
on Example Centric Programming [11]. The Gulf of Evaluation is 
so wide because programming is so abstraction-intensive. 
Examples have proven to be the best way to learn and understand 
abstractions of all kinds. Subtext takes this lesson to heart by 
integrating examples into the very fabric of programming. It is not 
even possible to write code without simultaneously supplying an 
example. It is not possible to expose an API without 
simultaneously supplying at least one example of its use. Every 

 



 

execution of a program is another example, taking the same form 
as its definition.  

Overt semantics narrows the Gulf of Evaluation because 
every definition is an example, and every execution is like the 
definition; syntax and semantics are aligned. 

3.4 Semantic Editing 
The flip side of the Gulf of Evaluation is the Gulf of Execution: 
the difficulty of determining how to change a program to achieve 
a desired change in behavior. This is inherently difficult in textual 
languages. The basic editing operations on text strings are 
character insertion and deletion, which mean nothing on their 
own, and are far removed from the semantic transformations we 
want to make. Subtext narrows the Gulf of Execution by 
making editing operations be meaningful semantic 
transformations. 

A refactoring [12] is a semantics-preserving change to a program. 
Subtext trivializes a number of these refactorings. A simple 
example is renaming. The spelling of a label is semantically 
irrelevant in Subtext, and is left as an uninterpreted comment. 
Editing a label is guaranteed to leave the program’s semantics 
unchanged. Any links to that node will automatically display the 
new label, but will not be affected otherwise. Making this change 
in a textual program is referred to as the “rename” refactoring, 
and requires a global program analysis and transformation (and is 
undecidable in the presence of reflection). Subtext eliminates the 
need for this refactoring because it represents the underlying 
semantics of naming directly. Likewise refactorings such as 
introduce local variable, and inline expression become irrelevant. 

Refactoring is symptomatic of poor notation. The hallmark of a 
good notation is that equivalent situations are equivalently 
described. The need for complex code transformation tools just to 
move between obviously equivalent descriptions indicates an ill-
suited representation. Subtext dissolves certain refactorings, like 
renaming, by aligning syntax and semantics properly. When this 
is not possible, Subtext attempts to provide refactorings as direct-
manipulation edits, rather than black-box “wizards”. 

The power of editing operations in Subtext is that they preserve 
important semantic properties. Automatic projection of changes 
ensures copy consistency. Many editing operations are based on 
copying, and thus preserve internal structure. It is particularly 
useful to preserve or transform link topology: this is called link 
conservation. 

Links are never broken by editing operations; instead they are 
meaningfully transformed. The simplest example of this is when a 
structure is moved, all of its external links are preserved, both 
incoming and outgoing. Moving laterally within the same 
container preserves semantics, while moving up or down converts 
its role between that of parameter, closure, or call (see §4.1). 
Many refactorings are chiefly concerned with automating the 
delicate surgery needed to conserve symbolic links; they 
degenerate into move operations in Subtext because of link 
conservation. 

Another example of link conservation is splicing. A function can 
be spliced into a link, executed by dragging it onto the link. 
Splicing results in a call to the function being inserted, and the 
original link being split into two links: one connecting the first 

argument of the function to the original source of the link; the 
other linking the original node to the result of the function. 
Splicing works well with nesting, so there is a presentation option 
to automatically nest when splicing. Figure 7 shows what a splice 
operation looks like during and afterwards. Splicing can be quite 
useful – it allows the factorial function in Figure 4 to be built with 
10 mouse gestures.  

a) dragging to splice b) nested splice  
Figure 7. Splicing 

Further experience with Subtext will likely reveal other semantic 
invariants beyond link conservation, and other editing operations 
that conserve them. Subtext narrows the Gulf of Execution by 
providing high-level editing operations that coherently 
transform the semantics of the program while preserving 
relevant invariants. 

4. TOWARDS A THEORY OF COPYING 
Subtext is only possible because the underlying mechanism of 
copying ties it together consistently. Copying is how programs are 
constructed, and how they execute. Copying has the inherent 
advantage of being a concrete concept, and the way programmers 
often work in practice. The simple idea of copying generates a 
rich theory that includes an abstract model of computation. A 
theory of copying is informally developed in this section. 

Recall that the basic setting of Subtext is a tree of nodes. Nodes 
are either structures or references. All non-leaf nodes of the tree 
are structures, and the nodes immediately beneath them in the tree 
are called their subnodes. Empty structures can be at the leaves of 
the tree, and can be thought of as “atoms”. References are only at 
the leaves of the tree, and are linked to a source node. The value 
of a reference is found by chasing links through references until a 
structure is found.  

Some nodes are built-in originally, but new nodes are created 
only by copying old ones. A copy operation takes a parent node 
and creates a child node, which is inserted at a specified position 
within some existing structure. Copying duplicates the entire 
subtree below the parent into the child, causing nested copies of 
all the subnodes. Copies of primitive functions also inherit their 
built-in behavior. 

Having reviewed this terminology, we can now state the primary 
properties of copying: it is isomorphic, continual, and higher-
order. We will defer discussion of higher-order copying until 
§4.5. 

Copying is isomorphic: it preserves internal link structure. If a 
reference in the subtree of the parent has a source that is also in 
the subtree, then the copy of the reference will be linked to the 
copy of the source. References with sources outside the parent 
subtree will be linked to the same source. Link isomorphism is 
simulated in textual languages with hierarchical name scoping. 
Subtext eliminates the need to declare scopes: links establish their 

 



 

own scopes implicitly as the least upper bound in the tree of their 
target and source. 

Copying is continual: changes project bi-directionally between 
copies, keeping them isomorphic. Change projection is selectively 
blocked to allow copies to diverge from each other. There are 
three basic kinds of change that are projected: inserting a copy, 
deleting a node, and modifying a reference.  

One way to block change projection is to declare that a child is a 
variant of its parent. Changes made within the subtree of the child 
will not project to the parent, and are called divergences. Changes 
made within the parent will continue to project into the child, 
unless they are overridden by a divergence. In particular, 
modifying a reference link overrides modifications to the parent 
reference. This is similar to modification in prototype-based 
languages (§5.1). 

Divergence also occurs outside variants. References can be 
designated as inputs, which means that changing their link is 
considered a divergence even if they are not in a variant. 
Automatic divergence of inputs allows each call of a function to 
have different input links. 

Divergence can be revised. It is possible to revert a node so that 
all its contained divergences are undone (sort of a structurally 
local undo). It is also possible to equalize divergences, 
propagating the changes up to the parent. 

4.1 Reactive Computation 
Execution in Subtext is driven by reaction to change. We have 
just described how structural changes (insertion, deletion, and 
linking) project through copy relationships between parents and 
children. However there is another kind of change: changing the 
link of a reference can change its value. Changes to values 
cascade down links and through primitive functions. Reaction to 
value change in this way is traditional data flow computation. The 
difference with traditional data flow is the extra dimension of 
“copy flow”, particularly because copying replaces calling.  

Traditional programming languages have three syntactically 
distinct ways of passing data: literals, variables, and function 
returns. Subtext combines all three of these into the single 
mechanism of a link. The role a link plays is determined by its 
direction in the tree structure. A link that refers downward is a 
function return1. A link that refers upward within a function is a 
variable reference. A link that refers upward outside the function, 
but within a containing function, is a free variable captured in a 
closure2. A link that refers upward through all containing 
functions is a global parameter (if to a reference) or a literal 
constant (if to a structure). A link can shift between these roles 
simply by moving its source to different locations. The same 
shifts require a coordinated series of edits in a textual notation. 

                                                                 
1 Multiple return values are allowed without the usual constraint 

of conventional languages that they all be bundled together at a 
“point of return”. 

2 Closures may be so puzzling because of the way they straddle 
static lexical structure and dynamic call structure. These 
structures become one in Subtext. 

4.2 Dereferencing 
An important feature of linking has been ignored up to this point. 
Links can pass “through” references, navigating into the subtree 
of the referenced structure. Such links are called dereferencing 
links. They are often represented in textual languages with 
“dotted paths” of names.  

The Subtext UI makes dereferences seem like regular links. Any 
reference node can be expanded in the same way that structures 
are. The subnodes of the referenced value are displayed on 
following indented lines, like the subnodes of a structure would 
be, except with a rectangular envelope drawn around them. The 
subnodes displayed in this way are called dereferenced nodes. 
The reference envelope is in a sense an embedded window on the 
referenced value. Naturally, dereference expansions can be 
nested, producing nested indented envelopes. Figure 8 shows an 
example of a function that calculates the payroll of an Employee 
structure which is passed by reference. The reference is expanded, 
and dereferencing links are made directly to the dereferenced 
nodes. 

reference envelope (blue)dereferencing links

 
Figure 8. Dereferencing 

When the value of a reference changes, any links that pass 
through that reference must be changed to follow the “same path”. 
Textual languages handle this by using symbolic node lookup at 
run-time to navigate the path. But Subtext eliminates delayed 
binding, so another mechanism must be used. The key idea is to 
define what it is that makes paths the “same”, based on the 
concept of node identity introduced below. 

4.3 Ancestral Node Identity 
The traditional method for determining whether two elements of a 
structure are the same is that their names are spelled the same. 
Subtext captures a deeper notion of identity, based on 
ancestry. 

Let us start with a structure containing some nodes of interest. 
Instances of that structure are created by copying it, which 
automatically creates nested copies of all the subnodes. These 
copied subnodes are considered to be identical to the originals. 
But only nested copies are identical – top-level copies create new 
node identities. Nested copying generates an equivalence relation 
on nodes which defines identity. 

This notion of identity is not affected by changing the spelling of 
node labels, nor by inserting or deleting nodes. A variant can thus 
rename, extend or contract the nodes defined in its parent. 

We can now state how dereferencing links are affected by 
changes to references: they follow the same path of nodes, as 
determined by node identity. This maintains the principle of 
isomorphism of links, only modulo node identity. There is a 
problem, however, if one of the nodes along the path is missing. 
In this case, a special ghost node with the correct identity is 
inserted to preserve the path of the link. A ghost node is 

 



 

highlighted in the UI as an error (usefully pinpointing it), and the 
link itself will carry an error value. Ghost nodes preserve the 
overt model of links even when they are broken. 

Dereferencing links are another example of the principle of 
abstraction without indirection. Rather than deferring resolution 
of meaning with run-time node look-ups, the meaning is 
established immediately and visibly, and then changed as needed 
contextually.  

4.4 Merging 
So far we have seen how a single parent node can spawn a tree of 
children. It is more powerful to allow nodes to be merged from 
multiple parents. 

Every node has a list of parents. Parents can be inserted, deleted, 
and replaced in this list. A node has a single parent when it is first 
created by copying. A structure will contain a copy of every 
subnode of every parent, with identical subnodes recursively 
merged together. The order of subnodes within a child structure 
preserves the order within each of the parents, extended where 
needed by the merge-order of the parents. References with 
multiple parents are linked based on the overriding rules 
described below. 

Historically, there have been two kinds of primitive data structure 
in programming languages: lists and records. Subtext provides a 
novel alternative: ancestral structures, which blend features of 
both lists and records. Like lists, structures in Subtext provide a 
traversable order on their subnodes, and support insertion and 
deletion. Concatenation (between disjoint lists) is provided by 
merging. Unlike lists, Subtext provides an insertion-invariant 
notion of position based on ancestral identity.  

Like records (and their inheritors, classes) Subtext allows 
position-insensitive random access to nodes, and node 
extensibility. Unlike records, no confusion is possible due to 
misspellings or homonyms (different names with the same 
spelling). The identity of nodes is determined definitively by their 
ancestry, irrespective of spelling. Merging allows structures to 
be combined as with multiple inheritance, but without the 
riddle of homonyms. [32]  

References can only have one link. When they are merged from 
multiple parents, overriding rules determine which parent 
dominates, or if there is a conflict. An example of merging is 
shown in Figure 9. A diamond-shaped parent graph is constructed 
with Employee at the top, Manager and Part-time Employee as its 
children, and Part-time Manager as the merged grandchild. The 
parent of a node is displayed when it is expanded, similarly to a 
reference’s link, with a label and a compass, and additionally 
indicating whether it is a copy or variant3. Non-divergent 
(unmodified) nodes are displayed in green, indicating that they 
are “inherited” or “defaulted” from their parent. The salary node 
of both Manager and Part-time Employee was modified, causing a 
conflict error when they are merged in Part-time Manager. The 
deductions node was modified in Part-time Employee, but inherited 

                                                                 
3 An alternative tabular presentation for parental relationships is 

proposed in §6.2. 

in Manager, so Part-time Manager inherits the overriding 
modification.  

inherited nodes (green)

parent links

merge conflict

modified nodes (black)

 
Figure 9. Merging 

The rules for overriding are similar to that of traditional software 
revision control systems. Merging provides built-in version 
control for free4. The same mechanism behind multiple 
inheritance also serves to merge versions of code. Better, 
Subtext provides exact version control. Version control based on 
textual comparison can only correlate versions heuristically, 
whereas Subtext knows the precise history and ancestral 
relationships, down to the node level. 

Note that with the addition of merging, we have also introduced 
the ability to change the parents of a node: new parents can be 
added, and old parents can be deleted or replaced. Change to 
parentage is governed by the principle of conservation of 
divergence: divergences in the child are preserved. For example, 
if a parent is deleted, subnodes copied from it are also deleted, 
unless they are divergent. A divergent subnode will not be 
deleted, but instead will turn into a node insertion (maintaining 
the same node identity). Another way of describing this principle 
is that when a node’s parents change, it maintains a constant delta 
relative to them, with this delta being defined by the divergences. 

4.5 Higher-order Copying 
There are two kinds of relationships in Subtext: copying and 
linking. Linking can be seen as a special kind of copying, and 
copying in turn can be seen as a relationship subject to copying 
itself. This generalization is called higher-order copying. Higher-
order copying provides a simpler and more powerful 
foundation for Subtext. 

A hint can be seen in the way that references are presented 
visually. A reference to a value is expanded into an indented 
structure (in the reference envelope) that looks much like 
inserting a copy of the linked value. In fact a reference to a value 
can be seen as a copy of the value, except for the semantics of 
equality. The Equality function must consider two references to 
the same value to be equal, while normal copies would be 
considered distinct. Such “referential copies” are not allowed to 
diverge. Thus references can be seen as a special case of copying. 

Copies map the structure of links isomorphically, so if a link is a 
copy, then the structure of copies must also be mapped 
isomorphically. A simplistic example is shown in Figure 10. The 
CEO node of a Company is by default a copy of the Chairman 

                                                                 
4 Currently only variants are tracked, but revisions are include in 

the support for mutable state proposed in §6.3.  

 



 

node. The FooCorp instance of Company inherits this internal copy 
relationship. Changing the salary of FooCorp’s Chairman changes 
the default CEO salary. Dotted arcs have been added to the 
screenshot to show the inheritance of node values. Note how the 
FooCorp CEO deductions node inherits from both FooCorp 
Chairman and Company CEO, with modifications to the former 
overriding the latter. Higher-order copying results in such multi-
dimensional relationships.  

copied parent link

modified node

value 
inheritance

 
 

Figure 10. Higher-order Copying 

Higher-order copying allows the parent of a structure to be a 
reference, making that structure a copy of the value of the 
reference. If the value of the reference is a function, the child 
becomes a higher-order function call. Higher-order copies yield 
higher-order functions. 

Subtext provides higher-order functions while maintaining the 
principle of abstraction without indirection. In the definition of 
the higher-order code, the function-valued reference will have 
some default value, and the higher-order call will be an inlined 
example of calling that default function. This maintains overt 
semantics while permitting higher-order abstraction. 

Higher-order functions in Subtext have a novel property called 
ancestral signatures. Untyped higher-order languages require 
only that function values match in the number of arguments with 
the caller. Typed higher-order languages further require a match 
of the function’s type signature. In Subtext, ancestral node 
identity is used to establish compatible function signatures. 
Compatible functions are like compatible classes: derived by 
extension or merging from a common prototype function, not just 
accidental alignment of the number and types of the arguments. 

4.6 Copying as the Essence of Programming 
The unification of linking with higher-order copying boils Subtext 
down to one essential ingredient: copying. Subtext is higher-order 
continual copying of trees. The simple idea of copying turns out 
to be rich and subtle enough to generate an abstract model of 
computation as well as a model of programming itself. 

Data flow and copy flow (§4.1) become one: the driving force of 
computation in Subtext becomes solely projection of changes 
through copies. It is interesting to contrast the resulting model of 
computation with the classical theory of Lambda Calculus [2]. 

The driving force of computation in Lambda Calculus is 
reduction, which is implemented by name-sensitive substitution. 
Substitution can be seen as a form of copying (with the name-
sensitivity ensuring isomorphism). The difference between 
Subtext and Lambda Calculus is in when the copying happens. 
Lambda Calculus programs execute by copying, consuming the 
program in the process, until it is reduced to a result. Subtext 
programs are built by copying, but execute reactively by change 
projection, leaving the program intact and continuously executing, 
and thus making its semantics overt.  

Copying provides not just a model of computation, but a model of 
the entire programming process. What a program does and what a 
programmer does are the same: manipulate copying. It is 
significant that copying is actually the way programmers tend to 
work in practice – a good omen for the goal of usability. Further, 
the unification of computation and programming provides novel 
synergies. For example, merging implements both multiple 
inheritance and version-control. A number of the proposed future 
research directions (§6) explore such synergies. 

The unification offered by Subtext has a major usability benefit: 
simplification. Conventional programming involves a formidable 
array of specialized tools and languages and formalisms. Every 
one of these seems to have its own style of IF statement. Subtext 
reduces the baroque complexity of textual programming into 
a seamless environment with a single conceptual framework. 
There is no longer a need for a distinct compiler, debugger, 
interactive shell, unit-tester, program builder, or version-control 
system: programming becomes mode-less. There is no conceptual 
difference between edit-time and run-time, code and data, syntax 
and semantics. Calling, referring, instantiating, sharing, refining, 
modularizing, and versioning all become forms of copying. The 
ultimate usability feature is coherence. 

5. RELATED WORK 
Subtext builds upon many related efforts throughout the history of 
programming languages. There is only enough space here to 
discuss the most prominent figures in this heritage. Foremost is 
Self [40][41], which first proposed that copying (in the guise of 
prototypes) could provide a unifying basis of both a programming 
language and its interactive environment. Self promulgated the 
principles of “concreteness, uniformity, and flexibility” [34] and 
immediacy [39]. Subtext is in large part an attempt to carry 
forward the pioneering vision of Self. 

5.1 Prototypes 
Subtext’s essential mechanism of copying is a generalization of 
prototypes [22][27]. Self [34][40][41] developed prototypes the 
furthest into a full fledged programming language and 
environment. Many flavors of prototypes were proposed, with 
different mixtures of sharing, modification, and delegation. 
Subtext tries to hide such implementation issues behind a simple 
model of distinct copies linked through change projection. 
Subtext generalizes prototypical copying to include function 
calling and even variable valuation. Although prototypes served 
as living data instances, code was still relegated to the 
netherworld of dead text awaiting execution. Subtext extends 
prototypes “all the way down” into the fabric of the code itself, 
making it is alive as data. The prototype languages were all 
object-oriented, whereas Subtext is functional, modeling 

 



 

computation as reactive structures. Subtext could be described as 
functional prototypes. 

5.2 Visual Programming 
There is a long history of research in Visual Programming 
Languages [6][25], so-called because they used diagrammatic 
rather than textual representations of programs. The early results 
were disappointing [13][30]. A common criticism was that 
diagrams did not scale well to large programs, resulting in 
incomprehensible mazes of boxes and lines, and laborious manual 
layout. Diagrams are good at compactly summarizing 
information, but are not well suited to highly detailed and large 
scale descriptions. Text is in fact quite densely detailed and has 
highly evolved conventions for large scale organization. The jury 
is still out as to whether Subtext can avoid the scaling limitations 
of visual languages. There is some reason for hope, because the 
Subtext UI is largely textual with only graphical embellishment, 
and so it can fall back on proven techniques for scaling text. 

From the point of view of Subtext, diagrams and text are equally 
limited by being paper-centric, conflating the issues of instructing 
compilers with human communication. Subtext uses both text and 
graphics, but only as user-interface techniques, which is what 
they are good for; not as a semantic model, for which they are 
poorly suited. This separation of concerns frees Subtext from the 
constraints of paper, for example allowing execution details to be 
melded with the static representation of a program.  

Some visual languages also revealed live execution details, but 
not while also supporting iteration or recursion. An exception was 
Pictorial Janus [17]. It had a unified representation of programs 
and their execution, supported recursion as infinite containment, 
and replaced names with topological properties. However its 
imperative semantics meant that while you could animate 
program execution, you could not see a program and its execution 
at once, an important usability goal of Subtext. 

Vital [14] is a visual environment for Haskell. Function results 
(but not their internal execution details) are presented 
continuously. Lazy execution is triggered when results are 
scrolled into view within an unbounded workspace. Type-driven 
stylesheets alter the presentation. Vital is most similar to Subtext 
when dealing with data structures, which can be edited through 
copy-and-paste operations that correspondingly alter their 
definitions. 

Subtext is related in many ways to Forms/3 [5], one of the most 
advanced visual languages. Forms/3 extends the familiar 
spreadsheet into a first-order functional programming language. 
In this way programming obtains the usability benefits of 
spreadsheets, such as liveness [15][36]. General purpose 
programming concepts are cleverly, but intricately, simulated 
within the spreadsheet metaphor. For example, abstract functions 
involve deductive inference to properly link call-sites and call-
frames. Subtext shares with Forms/3 the principle that human 
factors should guide programming language design. The basic 
difference is that Forms/3 tries to coerce a spreadsheet into a 
programming language, while Subtext tries to invent a 
programming language that is like a spreadsheet. 

The modularity mechanism of Forms/3 is called similarity 
inheritance [10]. It replaced the symbolic relationship of 
inheritance with continual copying relationships, established 

through cut-and-paste operations, resulting in “self-sufficiency”. 
This may have been the first proposal of Subtext’s principle of 
abstraction without indirection. Similarity inheritance was limited 
to static sharing of formulas between spreadsheet forms. Subtext’s 
more general copying mechanism replaces all forms of sharing 
and reference, and implements computation as well. 

5.3 Ergonomic Programming 
There is increasing focus on human factors as the critical issue in 
the design of programming languages and tools [21]. Subtext has 
been guided by the principles of the Cognitive Dimensions 
framework [13] and the Attention Investment model [4]. An 
application of these principles to the design of abstract functions 
in a spreadsheet [16] led to some similarities with the way 
functions are called by copying in Subtext. 

Copy & paste operations are pervasive in actual programming 
practice [19]. Linked editing [37] proposed text-editor support for 
continual copying of text regions, and studied its use as a 
surrogate for functional abstraction in the language. Subtext uses 
continual copying within a richer structure than text to entirely 
replace symbolic abstraction. 

5.4 Programming by Demonstration 
Programming by Demonstration [8][24] seeks to let the 
programmer live in a world of concrete examples, with the 
computer intelligently abstracting these examples into general 
purpose programs. The most closely related work in this node is 
Tinker [23], which allowed both its recorded examples and 
generated Lisp code to be incrementally edited. Subtext also taps 
into the power of examples to tame abstraction, but not so much 
to make the computer seem smarter, as to help the programmer 
work smarter. Nevertheless, Subtext should provide a good 
platform for such research, allowing examples and their 
abstractions to be recorded and represented commensurably.  

5.5 Syntax-directed Editing 
Subtext bears some resemblance to syntax-directed editors 
[31][35]. These editors had built-in knowledge of the language 
syntax, so that instead of editing a string of characters, the 
programmer was directly editing the abstract syntax tree (AST). 
New code would be added via templates with blank nodes 
corresponding to the production rules of the grammar. The 
program was kept syntactically valid at all times, and 
syntactically-specific editing assistance was provided. Syntax-
directed editors met resistance from practicing programmers [26]. 
A common complaint was that forcing the program to be 
syntactically valid at all times blocked well-worn shortcuts 
through invalid states. The compromise that has emerged in 
modern programming editors is to maintain a textual 
representation, but to add syntactic and semantic assistance “on 
the side”. This assistance is provided on a best-effort basis 
through such mechanisms as coloring, completion, and pop-ups. 

The goal of Subtext is not to make syntax easier to use, but to 
avoid having to use it in the first place. In fact humans have a 
well-developed and largely subconscious ability to parse 
language. Syntax-directed editing trades this subconscious facility 
for the conscious manipulation of explicit structure, structure 
which is mostly about signaling the compiler, not expressing the 

 



 

meaning of the program. This is a loss in usability: if it is 
necessary to use syntax it should be left implicit as in natural 
languages. But even better is to do away with the middle-man of 
grammar altogether. Grammar is fundamentally about encoding 
meaning into a serial channel, which is no longer needed once we 
have evolved to direct manipulation. Subtext is semantics-
directed editing.  

Intentional Programming [9] appears to be related to Subtext, 
although it is hard to tell precisely since only partial descriptions 
of it have been published. It seems to be a form of syntax-directed 
editing that does not block character-based editing shortcuts. 
Compatibility with (and extension of) mainstream languages is a 
primary goal. The underlying model appears to be a 
generalization of an abstract syntax tree. Names are abstracted 
into binding relationships. Specialized notations can be 
embedded, much like embedding a diagram in a WYSIWYG 
word processor document. This allows extension through 
presentation, but all the notations are still paper-centric. Subtext 
shares the goal of WYSIWYG programming, but rejects the 
constraints of backward compatibility with old languages and 
hard copy. 

5.6 Functional Programming 
Subtext is in spirit a functional programming language, harkening 
back to the original call of Backus [1] to liberate programming 
from its hardware roots. One of Backus’ goals was to lessen the 
dependency on names, a goal shared by Subtext, but not carried 
forward in the subsequent development of functional languages. 
Modern functional programming languages have demonstrated 
the power of sophisticated high-level abstractions. Subtext is 
trying to find ways to make such abstraction easier to use. 

6. FUTURE WORK 
Subtext is a young idea, perhaps no more mature than the first 
experiments with compilers in the 1950’s. Subtext is like 
starting over from the beginning with an alternative to 
punched cards. The initial prototype merely demonstrates that 
programming in this alternative medium is possible, and holds 
promise. Exploring the potential of the approach will require 
much further research and development. 

Here are just some of the challenges and opportunities: 

1. Performance. The design of Subtext has so far fearlessly 
ignored performance issues in order to optimize for usability. 
Scalable implementation will offer interesting challenges. 

2. User interface design and usability testing. Subtext must 
compete with the highly evolved and deeply entrenched user 
interface of text editing. Quite a few programmers have 
assured the author that they will give up Emacs when it is 
pried from their cold dead hands.  

3. Programming in the large. The disappointing track-record of 
visual languages justifies skepticism that any non-textual 
language can scale to real-world programs. Subtext must 
convincingly address this issue to be taken seriously. 
Because the Subtext UI is largely textual, scaling techniques 
proven for textual languages can be applied. In particular, 
traditional hierarchical decomposition ought to fit well with 
the tree structure of Subtext. 

4. Formalization. The theory of copying needs to be formalized 
in order to better understand its properties and expressive 
power. 

5. Types. What is the role of types in a language without a 
compile-time, where self-executing definitions automatically 
flush out many common type errors? 

6. Modularity. Modularity [28] is a precept of software design, 
while undisciplined copying is often considered its 
antithesis. Subtext offers a third way: ad-hoc copies which 
are recorded, and which can propagate changes. The chaos 
created by covert copying can be replaced with tools that 
manage copying and supervise change propagation. 
Modularity, rather than the antithesis of copying, can be seen 
as a special pattern of copying, one which can be refactored 
out of ad-hoc patterns. 

7. Refactoring and code transformations. Subtext allows some 
major refactorings to be replaced by direct-manipulation 
operations such as dragging nodes to change their location. 
Code transformations like splicing can also become direct 
manipulations. A taxonomy of useful refactorings and 
transformations needs to be developed and correlated with 
UI affordances. 

8. Databases. With the addition of declarative queries, Subtext 
would become a database. This offers a new take on the 
infamous “impedance mismatch” problem [7]: the clash 
between the data models of the language and the database; 
which become identical in Subtext. 

9. Meta-programming. Subtext can be made fully reflective, 
and implemented meta-circularly. Reactive computation plus 
declarative queries may enable novel meta-programming 
capabilities. Do meta-queries support Aspect Oriented 
Programming [18]? What is the potential for Domain 
Specific Languages in Subtext?  

The second version of Subtext is currently under development, 
and is the source of the screenshots in this paper. This version 
implements the model of higher-order copying, and focuses on the 
ideas discussed in the following three subsections. 

6.1 Functional Iteration 
There is a long-standing dispute between recursion and iteration. 
Recursion is more elegant formally, but many programmers find 
iteration to be simpler. Subtext reconciles iteration and 
recursion by offering iteration as a presentation of recursion. 

This presentation is called functional iteration. The basic idea is 
to flatten a singly-recursive function into a linear scrolling-
window display, with each recursive call occurring vertically 
below, rather than nested within, its caller. Links that drill in and 
out of recursive calls would now hop between these “steps”. 
Links passing between the same node in adjacent steps (called 
chained links) would display as vertical vectors, and be labeled 
next or previous. This presentation would be most effective when 
at least three steps were visible, so that all the links in and out of 
the middle one were fully visible.  

 



 

Functional iteration promises the best of both worlds: the 
simple semantics of functional recursion with the simple 
conceptual model of imperative iteration. It can support 
capabilities of stream-processing languages such as Lucid [42] 
and Lisp Series [44]. While these languages manipulated streams 
of data, Subtext will manipulate streams of code. Chained links 
propagate variable values up and down these streams, providing 
the convenience of side-effecting assignment as in imperative 
iteration, but without violating single-assignment semantics. 
Functional iteration can be implemented largely as a presentation 
on top of the existing model of recursion. 

6.2 Adaptive Conditionals 
Adaptive conditionals are a new kind of conditional construct that 
exploits the higher-order features of Subtext. The intuition is this: 
when we informally describe a complex process, we tend to first 
explain a basic case of the entire process. Then we come back and 
explain how special cases differ from the basic case: “except 
when A do B instead of C ”. To implement such an informal 
description using normal conditionals, we must disentangle the 
interrelated exceptions into a linear logical flow, producing a 
recipe a computer can follow. An adaptive conditional is 
different: it lets you write the program just like the informal 
description, and delegates the job of producing a recipe to the 
compiler. 

You start by implementing the simple base case as a function. A 
special case is implemented by making a variant of the base case. 
This variant is edited to implement the exceptions in the informal 
description, literally replacing the code for C with code for B. 
There are now two functions: the base case, and a variant case. 
What we need to do is somehow blend these two functions 
together into a single function that does the right thing in all 
cases. To do this, we introduce predicates. 

A predicate is a special Boolean-valued function. The simplest 
kind of predicate is to test whether two nodes are equal. 
Predicates conditionalize merging. When a child structure is 
merged from multiple parents, any of the parents containing a 
false predicate will be masked. Returning to the example, we 
must insert a predicate into the variant case that is true when A. 
Now merging the base case and the variant case produces a 
function with the right behavior. If A is false, the merge is equal 
to the base case. If A is true, the merge is equal to the variant, 
since all its edits override the base case in the merge. Adaptive 
conditionals merge code variants conditionally – like “run-
time version-control”. 

Adaptive conditionals will be supported by a special presentation 
called a case table, somewhat reminiscent of decision tables [20]. 
Figure 11 shows a mock-up. The rows of the table are nodes and 
the columns are cases. Differences between the cases are 
indicated by background coloring (this will also be used as a 
general difference visualization). A factorial function is shown 
implemented by two cases. The basic case contains the recursion. 
That case is overridden by a zero case triggered by a 0 input, 
setting the result node to 1. The zero case is false in this call. 

Conditional
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Figure 11. Adaptive Conditional 

Adaptive conditionals are an extreme experiment, but with 
interesting potential benefits: 

1. Normal conditionals must often be duplicated in multiple 
places, coordinated by a shared Boolean flag. Adaptive 
conditionals combine variations at scattered locations into a 
single variant case, capturing the meaning without redundant 
notation. 

2. Predicates are similar to guarded expressions and pattern 
matching in functional languages [38], which can be a 
succinct form of expression. 

3. It is easier to see the conditional logic of a program because 
it is moved into an orthogonal dimension from the rest of the 
program’s structure. Conditional expressions, like choice, are 
intertwined with data flows. Conditional statements are more 
distinctive, with keywords and bracketed blocks, but block 
structure is overloaded for many other purposes. Adaptive 
conditionals use the “3rd dimension” of case table columns. 

4. Cases can easily cause a conflict error by modifying the 
same node. This is not a bug, it is a feature. It indicates a 
combination of cases the programmer has ignored. The 
situation can be resolved by adding another case merging the 
conflicting ones and resolving the dispute. Normal 
conditionals are orthogonal: in every possible situation they 
will produce some result, perhaps incorrectly. The 
programmer must consider all these possibilities up front. 
Adaptive conditionals allow design decisions to be divided 
and conquered. 

5. Adaptation supports intercession into code somewhat like 
Aspect Oriented Programming [18]. 

6. Conditional cases directly map to specific examples, and can 
be created directly from such examples [11]. 

7. Informal specifications are naturally expressed as tangled 
exceptions that can be directly modeled by adaptive 
conditionals. The conceptual gulf between the language of 
specification and the language of implementation is 
narrowed. 

8. It is simpler and more concrete to create variants of code 
with different behavior than to abstract a single version of 
the code with conditional logic. Proper abstraction, if it is 
necessary, can be deferred to later refactoring. Adaptive 
conditionals reduce the cognitive burden of abstracting 
dynamic behavior. 

 



 

6.3 Mutable State 
Mutable state is a major dilemma of programming language 
design. Functional languages have avoided it for good reason (the 
chaos of side-effects), but at great cost in complexity (for example 
monads [43]). Usability mandates support of mutable state 
simply because it is so deeply entrenched in common sense. 

The approach being explored involves recording the history of all 
changes so that complete copies of past states of the system 
appear to have been recorded. Copying is Subtext’s forte, and it 
already has the ability to lazily instantiate copies with differences 
– exactly what an implementation of history recording requires. A 
scalable implementation would also need the ability to “forget” 
the details of history, replacing them with summarizations. 
Recording and forgetting history may seem a hopelessly 
inefficient scheme, but perhaps no more so than garbage 
collection seemed 30 years ago. 

Subtext would thus reduce mutable state to copying (as with  just 
about everything else). The challenge is to support a common 
sense notion of mutable state while maintaining the benefits of the 
complete static visibility of program dynamics. How can a 
program mutate state when there is no such thing as run-time? 
Subtext proposes actions: functions that take a reference to any 
subtree (called the input state), and produce an output state that is 
a modified copy of the input. The input state of an action is by 
default the current global state. The output of such an action is 
thus a potential future state, which visibly reveals what the 
action’s effects would be, were it to be executed. Executing an 
action turns its potential future into the actual present. Note that 
actions are themselves part of the global state, and thus create 
recursive copies of the global state. Time is modeled as global 
recursion. Time is partially ordered: actions can be wired up in 
“state-flow” graphs to perform parallel computation free of 
implicit side-effects. This approach combines the clear 
semantics of functional programming with a common sense 
notion of mutable state. It will be up to specialized presentations 
to display history, futures, and state-flow in a simple and concrete 
way. 

7. CONCLUSION 
The exceptional difficulty of programming is in large part due to 
encoding programs as text strings, a design cemented in the very 
first programming languages. We have gotten as far as text will 
take us. The metaphor of programming as writing is no longer 
helpful. 

Subtext offers an alternative medium to text, one designed from 
scratch to make programming easier by shortening mental leaps. 
The representation of a program is the same thing as its execution: 
syntax overtly aligns with semantics. Relationships are direct, not 
intermediated by delayed binding of symbols. Editing is coherent 
transformation of semantics. The essence of this new medium is 
copying: higher-order continual copying of trees generates a 
unified theory of both computation and programming. The 
traditional assortment of programming tools and formalisms 
collapses into one seamless workspace, with a simple and 
consistent conceptual model. Programming becomes more akin to 
using a spreadsheet than a keypunch. 

Subtext is a fresh start. The initial prototype shows promise, but 
is still nascent. Much work, and risk, is left: Subtext opens up a 
whole new territory to explore. There is hope that we can make 
programming fundamentally easier.  
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