
Subtext: Uncovering the Simplicity of Programming
Jonathan Edwards

MIT CSAIL
32 Vassar St.

Cambridge, MA 02139

edwards@csail.mit.edu http://subtextual.org

ABSTRACT
Representing programs as text strings makes programming harder
then it has to be. The source text of a program is far removed
from its behavior. Bridging this conceptual gulf is what makes
programming so inhumanly difficult – we are not compilers.
Subtext is a new medium in which the representation of a program
is the same thing as its execution. Like a spreadsheet, a program
is visible and alive, constantly executing even as it is edited.
Program edits are coherent semantic transformations.

The essence of this new medium is copying. Programs are
constructed by copying and executed by copy flow: the projection
of changes through copies. The simple idea of copying develops
into a rich theory of higher-order continual copying of trees.
Notably absent are symbolic names, the workhorse of textual
notation, replaced by immediately-bound explicit relationships.
Subtext unifies traditionally distinct programming tools and
concepts, and enables some novel ones. Ancestral structures are a
new primitive data type that combines the features of lists and
records, along with unproblematic multiple inheritance. Adaptive
conditionals use first-class program edits to dynamically adapt
behavior.

A prototype implementation shows promise, but calls for much
further research. Subtext suggests that we can make programming
radically easier, if we are willing to be radical.

Categories and Subject Descriptors
D.1.7 [Programming Techniques]: Visual Programming; D.1.1
[Programming Techniques]: Functional Programming; D.2.6
[Software Engineering]: Programming Environments –
interactive environments, graphical environments; D.2.3
[Software Engineering]: Coding Tools and Techniques –
program editors; H.5.2 [Information Interfaces and
Presentation]: User Interfaces – interaction styles.

General Terms
Human Factors, Languages

Keywords
Non-textual programming, visual programming, prototypes,
copying.

1. INTRODUCTION
Programming is inhumanly hard. It stretches our mental abilities
past their natural limits. The extraordinary difficulty of
programming causes or aggravates all the chronic ills of software
development. Programming does not need to be so hard.

Making things easy for people is the study of usability. Donald
Norman [29] identified two basic usability problems: the Gulfs of
Execution and Evaluation. The Gulf of Execution is the difficulty
of translating a desired goal into an action to be executed. The
Gulf of Evaluation is the difficulty of determining whether an
observable state meets the desired goals. These gulfs loom vast
for programming languages, because programs are represented as
text strings.

The Gulf of Evaluation arises when we try to understand a
program by readings its source text, a task so complex that only
computers can do it reliably. Compilation is an intricate global
analysis, and execution requires huge stores of memory. Testing
and debugging tools give us only brief glimpses across the gulf.
Preceding work on Example Centric Programming [11] proposed
using examples to help comprehend program execution, but was
severely constrained by the abstract nature of text.

Matters are no better when we turn to the Gulf of Execution. The
affordances offered by text – inserting and deleting characters –
are meaningless on their own. Most of the possible editing
changes we can make leave the program invalid. Most interesting
changes in semantics require delicately coordinated edits in
widespread locations. The increasingly popular practice of unit
testing [3] asserts that we cannot trust even simple changes
without testing them automatically.

Norman’s two gulfs arise when there is a mismatch between
physical representation and conceptual meaning. A major reason
that programming is so hard is that text strings are a poor
representation for programs.

Text is paper-centric: pen and paper are a complete
implementation. Modern software technology allows us to create
arbitrary computer-based media, free of the limits of paper. A
program can be represented in an abstract data model, and the
programmer can use a GUI to directly manipulate [33] that model:
WYSIWYG programming. This has long been done with other
complex information artifacts, such as spreadsheets, documents,
and diagrams. In all these cases, we no longer expect a paper
printout to be a complete representation. It is time to transcend
paper-centric programming.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

There have been a number of attempts to escape the limitations of
textual programming, notably visual programming languages and
syntax-directed editing. These efforts are discussed in §5 (Related OOPSLA’05, October 16–20, 2005, San Diego, California, USA.

Copyright 2005 ACM 1-59593-031-0/05/0010...$5.00.

mailto:edwards@csail.mit.edu
http://subtextual.org/

Work), where it is argued that they stayed largely within the
margins of paper.

Subtext is an experiment to develop a paper-free medium of
programming, one designed for usability. In this medium the
representation of a program is the same thing as its execution.
Aligning syntax and semantics narrows the conceptual gulfs of
programming. The experience of programming becomes more
akin to using a spreadsheet than a keypunch. This medium is
based upon a single unifying concept: copying; which develops
into a rich substrate for the entire process of programming.

2. A BRIEF TOUR OF SUBTEXT
To discuss the design of Subtext, and the theory that underlies it,
we will first introduce the basic features of the research prototype.
This prototype is implemented in Java and SWT. It is only a proof
of concept, lacking many niceties.

The graphical and interactive features of the user interface (UI)
are essential to the experience of Subtext, so it is difficult to
convey an accurate impression with only prose and a few
screenshots. The interested reader is encouraged to view the 18
minute video at http://subtextual.org/demo1.html instead of
reading this section. An online version of this paper, including
full-color screenshots, is at http://subtextual.org/OOPSLA05.pdf.

All code and data in Subtext is organized into a single tree of
nodes. There are two types of nodes: structures and references.
The structures form the tree: each structure is said to contain the
nodes below it in the tree, which are called its subnodes. The
subnodes of a structure are ordered. Every node has exactly one
container structure (except the root node, which has no
container). At the leaves of the tree are empty structures and
references. Empty structures are often used as “atomic values”. A
reference is a pointer to another node, called its value.

Every node has a label, which is a string. The labels on the
subnodes of a structure make it look like a traditional record, but
as will be explained in §4.3, labels are purely comments, not
identifiers. Subtext supplies primitive data types like the Booleans
and integers, each of which is a structure containing all values of
the type. Each primitive value is an empty structure whose label is
an appropriate print string. For example, the integers are labeled
with decimal strings, and are contained in the correct order in the
Integers structure. The integers are properly infinite.

The Subtext user interface is primarily based on views of the tree
of nodes, using an outline metaphor (often called a tree widget). A
window can be opened on any sub-tree, and within that window,
structures can be hierarchically expanded or collapsed. An
expanded structure shows its subnodes indented on the following
lines.

Figure 1 shows a window based at the root of the tree, expanded
to show the contents of Booleans and Employee. The Functions
structure shows an expansion affordance activated by the
proximity of the mouse. The Employee structure contains two
subnodes, salary and deductions, which are references. Their
values are displayed to their right, shaded in blue.

expanded structure

reference

value (blue)

collapsed structure

popup expand/collapse affordance

Figure 1. Tree outline

2.1 Functions
Functions are structures that react to change. In Figure 2, the Sum
function contains 3 subnodes, labeled first, second, and =, which
are respectively its two arguments and result. Changing either of
the two arguments will cause the result to automatically change to
contain their sum. This happens essentially by magic, because
Sum is a primitive built-in function.

collapsed function

expanded function

Figure 2. Functions

The arguments and result(s) of a function are labeled nodes like in
a record. This is similar to keyword arguments in some languages.
But note the collapsed form of the Difference function: the labels
of the arguments are hidden, and the result node is moved to the
right of the parentheses. There is a convention that the first,
second, … = nodes should be presented in this more familiar
mathematical style when the structure is collapsed. This
convention is a user-selectable option that can be altered globally
or locally.

2.2 Creation by Copying
New nodes are created in only one way: by copying. An existing
node is copied to some position within an existing structure. If the
original node is a structure, its entire sub-tree of nodes is copied
along with it. Copying is initiated by the programmer with drag-

http://subtextual.org/demo1.html
http://subtextual.org/OOPSLA05.pdf

and-drop operations (or copy-and-paste, which has not yet been
implemented). Copying is used to both instantiate data structures
and call functions, which are actually the same thing in Subtext.
The original definition of a function or data structure that serves
as a template for copying is referred to as its prototype.

To see how functions are called, we will add some behavior to the
Employee structure. We will calculate payroll as the difference
between salary and deductions. We create the payroll node by
dragging a copy of one of the other nodes and editing its label.
We call the Difference function by also dragging a copy of it into
the data structure.

2.3 Links
The final step of this example is to link the arguments and result
of the function to the nodes of the data structure. Recall that a
reference is a pointer to another node, called its value. Links
control the values of references. A reference is always linked to
exactly one other node, called its source. If it is linked to a
structure, then that structure is its value, and the reference is
called a constant. All the primitive values are empty structures, so
any reference to them is a constant. If a reference is instead linked
to another reference, it is called a variable. The value of a
variable is the same as the value of its source. In other words,
variable links are chased until a constant is found. Links are
reactive: if the value of a reference changes, all of the references
linked to it change their values along with it.

Continuing with the example, we need to make three links,
connecting the arguments and result of the Difference function to
the data nodes of Employee. Linking is initiated like copying,
through drag-and-drop or cut-and-paste. Drag-and-drop
operations draw a rubber band to visualize the link being
established. Primitive values can be also be linked with in-place
keyboard editing. Figure 3 shows the result after having made the
needed links. The Employee structure now automatically
calculates the value of the payroll node as the difference of salary
and deductions, and recalculates automatically whenever they
change. This data structure now acts like a function: you change it
and it changes in response. Note how every intermediate value of
the computation is visible, and the internal execution of the call of
Difference can be made visible by expanding it.

source compass

value

popup vector (red) link (blue)

Figure 3. Linking

Figure 3 shows some of the options for presenting links in
Subtext. Every reference node displays its value. If the reference
is a variable, the source is also displayed, controlled by a number
of options. For example, a link to an = node can substitute the
label of the containing function, as shown in the payroll node,
whose source presents as Difference.

Following the source label is a circular widget called a compass.
The compass has an indicator tick oriented in the direction of the
source node. Compasses avoid the visual confusion that would
result if all links were displayed as vectors drawn between nodes,
as some visual languages have attempted. Instead, vectors are
drawn selectively and interactively. When the mouse is over a
link, the compass indicator extends into a vector reaching all the
way to the source node, as shown for the link from salary. This
interactive revelation of links is more effective than can be
conveyed in text or video; you need to be driving the mouse to
fully appreciate it.

There are many further options for representing links. For
example, groups of related links can be vectorized together. The
presentation of links is crucial to the usability of Subtext, as
discussed further below.

2.4 Calling by Copying
The Difference function was called by making a copy of its
prototype. The internal structure and behavior of the function was
duplicated in the copy. Likewise, if a new instance of the
Employee structure is created, it will duplicate all the internal
structure and linkages, including another copy of Difference, and
thus replicating the automatic calculation behavior of payroll.
Copying a node copies the entire subtree of contained nodes and
preserves the internal structure of the links between them.

What if the payroll calculation changes after Employee instances
have been created? Or what if the internal implementation of
Difference changes? These changes will be propagated
automatically to all the affected copies.

2.5 Conditionals and Recursion
Figure 4 shows a recursive factorial function. Recursion – a
function calling itself – is done by just copying the function into
itself. This creates an infinitely deep tree, which is tolerated
because copying is materialized lazily. Projection of values down
links triggers copying on demand. Infinite recursion is stopped by
putting a maximal depth on structures, analogous to an execution
stack limit, and returning an error value on links that traverse this
boundary.

dead (gray background)

defaulted (green)

Figure 4. Factorial

Note how the second arguments of Difference and Equality are
green. This indicates that they have been defaulted from the
prototypes of those functions. Calling as copying provides
defaulting on all arguments.

Conditionals are built with the Choice primitive function, which
has 4 subnodes: if, then, else, =. In the conventional manner, the if
argument is a Boolean, which selects either the then or else
argument, returning it in =. Conditionals help visualize their
operation by graying-out either the then or else argument,

whichever was not chosen, as seen in the then node in Figure 4.
The gray background indicates the node is dead: its value does
not contribute to the result of the function.

Death is infectious – it propagates into the linked sources of a
dead node, unless they are resuscitated by a link from a live node.
This is shown in Figure 5, where the first recursive call has been
expanded. It does not need to recurse, and so the else argument is
dead. That else is linked to further recursion, which is shown
executing, unboundedly, and returning the Too deep! error. But
this error is irrelevant because the conditional is ignoring it, and
the looping code is shown as dead. This behavior is similar to a
non-strict lazy functional language.

Figure 5. Factorial recursion

3. PRINCIPLES OF SUBTEXT
Having introduced the basic features of Subtext, we can now
discuss the principles behind its design, which are all oriented
towards making programming easier.

3.1 Language Extension through Presentation
Subtext introduces a new way to extend programming languages:
presentations, which offer alternative ways to view and edit
aspects of the program. We have already seen an example of this,
in the way that the first, second, … = nodes of a collapsed
function can be laid out mathematically. Presentations can be
controlled from property sheets attached to nodes. Only the user
interface is extended to support presentations, not the underlying
semantics of Subtext, nor the programs themselves. Presentations
are like syntactic stylesheets for programs.

A more significant example is nesting. Traditional syntax-based
languages have two kinds of data flow. One kind uses expression
nesting to encode the flow of return values up a tree of
expressions. The other kind of data flow cross-cuts the expression
tree via variable assignment and reference. It is often necessary to
translate between these two different forms. When an expression
value is needed in more than one place, it must be de-nested and
assigned to a variable. Variables are also introduced when
expressions become nested too deeply to be understood. Nesting
further requires that expressions have only one value. This
constraint becomes awkward in many situations, leading to multi-
value wrappers, or communication through side-effects. Subtext
avoids these problems with a single kind of data flow that
supports an arbitrary graph structure. New edges (links) can be
added to the graph without introducing local variables, refactoring
code, or bundling values.

However a tree-structured data flow is a very common pattern,
and the mathematically inspired convention of nested expressions
is both deeply entrenched and highly expressive. To exploit these
benefits, Subtext offers expression nesting as a presentation
option. Any reference to the = node of a function can be nested by
clicking on the link. The referenced function is then embedded in
place of the link, surrounded by square brackets. Figure 6 shows
the result of nesting the function call in Figure 3. Clicking on one
of the square brackets de-nests the function. Nesting does not
require a strictly tree-structured data flow, it merely allows the
programmer to designate a spanning tree within the graph to be
represented with bracketing.

nested function
Figure 6. Nesting

Nesting provides the best of both worlds: the generality and
flexibility of graph-structured data flow with the
expressiveness and familiarity of tree-structured data flow. It
does this unobtrusively in the user interface. In textual languages,
such matters are typically permanent commitments made in the
basic design of a language, and thus fraught with dilemmas.

Textual languages support extension through macros and layered
translation. These techniques are highly disruptive, because the
entire development tool-chain is affected, as are all the
programmers, like it or not. Subtext gracefully sidesteps these
problems because of the clean separation of concerns between the
internal model of a program and its external user interface.
Textual representations conflate these issues, forcing the compiler
and the programmer to work with exactly the same representation.

Presentations avoid dilemmas of textual language design and
extension by offering checkboxes on a stylesheet.

3.2 What’s in a Name?
Symbolic names are the workhorses of programming languages.
They carry the burden of everything not implied by grammatical
structure. Names serve many masters, but none of them well.
Names are used to:

1. Establish relationships between points in the program, by
repeating the same spelling. Constantly inventing pithy
unique names is burdensome. Misspellings and homonyms
easily disrupt name-based relationships. Renaming is
undecidable in the presence of reflection.

2. Implement abstractions, by delaying the binding of same-
spelled names until compile-time or run-time. Much
language semantics is smuggled in through arcane binding
rules, for example method dispatch in OO. Delayed binding
makes relationships implicit and contingent, obscuring them
from the programmer.

3. Serve as comments and mnemonic aids.
The otherUsesOfNames interfereWith this
English.Noun.Purpose.

Subtext separates the uses of names into distinct mechanisms
tailored to their purpose. The first purpose of names is to
establish relationships. In Subtext, relationships are explicit,
immediately-bound links within programs. These relationships are
directly captured during editing in Subtext’s internal database,
without recourse to names. Every label could be foo, confusing
the programmer no end, but not the computer. Textual
programming requires the constant invention of unique names just
to create structure, a burden that is lifted in Subtext.

3.2.1 Abstraction without Indirection
The second purpose of names is to support abstraction through
delayed binding. Consider the primordial form of abstraction in
programming languages: function calls. A function is represented
by a symbolic name, which is resolved at compile-time or later
into the function’s definition. The definition can change at any
time prior to binding. The arguments of the function are bound at
call-time, so that they are free to change up till then.

In Subtext, a function call is immediately in-lined at edit-time, so
that its definition is explicit and visible. If the definition of the
function changes, those changes are globally replicated to all the
inlined copies. The arguments of the function are also bound
during editing, so that its execution is explicit and visible. If the
values of the arguments change, the function recomputes as
needed.

Functional abstraction is thus achieved without hiding meaning
behind the delayed binding of an indirect reference. This principle
is called abstraction without indirection. It is made possible by
the ability of the program representation to automatically react to
change. Abstraction does not need to be obscured by
indirection and deferral – that is only necessary in static
notations that can not react to change. Other examples of this
principle in Subtext are the elimination of symbolic node names
(§4.3), and higher-order functions (§4.5).

3.2.2 The Efficiency of Ambiguity
The third and final purpose of names is to serve as comments and
mnemonic aids. These are matters of human communication and
understanding, quite different from the needs of compilers and
interpreters. Subtext frees names of their other burdens so as to
optimize them for this purpose, and amplifies them through user
interface techniques. Names are too rich in meaning to waste
on talking to compilers.

The use of names in natural languages is quite different from that
in programming languages. The vocabulary of natural languages
is relatively fixed, and ambiguous overloading is common.
Anaphoric abbreviation (e.g., a pronoun) is routine. Humans are
highly skilled at disambiguating from context. There is a good
reason for this: ambiguity increases the bandwidth of
communication. Any information that can be inferred
contextually by the listener is redundant.

Subtext exploits the human ability for contextual
disambiguation to increase the bandwidth of programming.
Links display the label of their source node to help the
programmer understand or remember the link. These labels will
often not be unique, but still perfectly clear from context, and
more succinct than globally unique names would be. Presentation
options allow the programmer to tune for the desired level of

ambiguity, ranging from a fully-qualified containment tree path
(with subscripting of homonyms), all the way down to elision into
pronouns like that (referring to the prior = node).

Ambiguity is most effective in human communication during a
conversation, when questions can be asked. Subtext offers
interactive disambiguation through the mouse. Mousing over a
link causes its compass to extend into a vector to the source node.
Hovering the mouse over a link can open a “tool tip” popup with
the full containment path of the source and a small display of its
container context. A mouse gesture can open another window on
the source node.

The planned keyboard interface for link editing also exploits the
efficiency of ambiguity. Drag-and-drop is a convenient way to
make a link when the desired source is visible, or can easily be
browsed to. In other situations, typing a name on the keyboard
may be more efficient. There is a useful analogy with web
browsing. A textual language expects you to type in the one true
unique name, much like a URL. Subtext will be more like using
Google – names will be used as search keys, with the hits ranked
and contextually summarized for easy recognition and selection.

Subtext provides an interactive medium that establishes
meaning conversationally.

3.3 Overt Semantics
The Gulf of Evaluation is the difficulty of understanding what a
program does from its source representation. The standard textual
representation of a program is far removed from its run-time
behavior. Subtext seeks to narrow this gap by using a different
medium of representation. Every node always has a value, and
every function is a living example of its execution. Static and
dynamic aspects are intertwined, and there is no difference
between edit-time and run-time. This is reminiscent of the way
spreadsheets work, except that even spreadsheets hide the internal
workings of their formulas, whereas Subtext is transparent all the
way down.

The full meaning of a program is the set of all its possible
executions. In Subtext, every execution of a program is a
structurally equivalent projection of it, in which specific values
change but the structure remains intact. The single example
demonstrated by the program’s definition is thus a revealing
exemplar of its full meaning. This design principle is called overt
semantics.

Overt semantics dispels the mystery of debugging. There is no
need to guess at what happened inside the black box of run-time:
debugging becomes merely browsing the erroneous execution,
which is a copy of the program.

Overt semantics is an application of the proven power of
examples to elucidate abstractions, as called for in the prior work
on Example Centric Programming [11]. The Gulf of Evaluation is
so wide because programming is so abstraction-intensive.
Examples have proven to be the best way to learn and understand
abstractions of all kinds. Subtext takes this lesson to heart by
integrating examples into the very fabric of programming. It is not
even possible to write code without simultaneously supplying an
example. It is not possible to expose an API without
simultaneously supplying at least one example of its use. Every

execution of a program is another example, taking the same form
as its definition.

Overt semantics narrows the Gulf of Evaluation because
every definition is an example, and every execution is like the
definition; syntax and semantics are aligned.

3.4 Semantic Editing
The flip side of the Gulf of Evaluation is the Gulf of Execution:
the difficulty of determining how to change a program to achieve
a desired change in behavior. This is inherently difficult in textual
languages. The basic editing operations on text strings are
character insertion and deletion, which mean nothing on their
own, and are far removed from the semantic transformations we
want to make. Subtext narrows the Gulf of Execution by
making editing operations be meaningful semantic
transformations.

A refactoring [12] is a semantics-preserving change to a program.
Subtext trivializes a number of these refactorings. A simple
example is renaming. The spelling of a label is semantically
irrelevant in Subtext, and is left as an uninterpreted comment.
Editing a label is guaranteed to leave the program’s semantics
unchanged. Any links to that node will automatically display the
new label, but will not be affected otherwise. Making this change
in a textual program is referred to as the “rename” refactoring,
and requires a global program analysis and transformation (and is
undecidable in the presence of reflection). Subtext eliminates the
need for this refactoring because it represents the underlying
semantics of naming directly. Likewise refactorings such as
introduce local variable, and inline expression become irrelevant.

Refactoring is symptomatic of poor notation. The hallmark of a
good notation is that equivalent situations are equivalently
described. The need for complex code transformation tools just to
move between obviously equivalent descriptions indicates an ill-
suited representation. Subtext dissolves certain refactorings, like
renaming, by aligning syntax and semantics properly. When this
is not possible, Subtext attempts to provide refactorings as direct-
manipulation edits, rather than black-box “wizards”.

The power of editing operations in Subtext is that they preserve
important semantic properties. Automatic projection of changes
ensures copy consistency. Many editing operations are based on
copying, and thus preserve internal structure. It is particularly
useful to preserve or transform link topology: this is called link
conservation.

Links are never broken by editing operations; instead they are
meaningfully transformed. The simplest example of this is when a
structure is moved, all of its external links are preserved, both
incoming and outgoing. Moving laterally within the same
container preserves semantics, while moving up or down converts
its role between that of parameter, closure, or call (see §4.1).
Many refactorings are chiefly concerned with automating the
delicate surgery needed to conserve symbolic links; they
degenerate into move operations in Subtext because of link
conservation.

Another example of link conservation is splicing. A function can
be spliced into a link, executed by dragging it onto the link.
Splicing results in a call to the function being inserted, and the
original link being split into two links: one connecting the first

argument of the function to the original source of the link; the
other linking the original node to the result of the function.
Splicing works well with nesting, so there is a presentation option
to automatically nest when splicing. Figure 7 shows what a splice
operation looks like during and afterwards. Splicing can be quite
useful – it allows the factorial function in Figure 4 to be built with
10 mouse gestures.

a) dragging to splice b) nested splice
Figure 7. Splicing

Further experience with Subtext will likely reveal other semantic
invariants beyond link conservation, and other editing operations
that conserve them. Subtext narrows the Gulf of Execution by
providing high-level editing operations that coherently
transform the semantics of the program while preserving
relevant invariants.

4. TOWARDS A THEORY OF COPYING
Subtext is only possible because the underlying mechanism of
copying ties it together consistently. Copying is how programs are
constructed, and how they execute. Copying has the inherent
advantage of being a concrete concept, and the way programmers
often work in practice. The simple idea of copying generates a
rich theory that includes an abstract model of computation. A
theory of copying is informally developed in this section.

Recall that the basic setting of Subtext is a tree of nodes. Nodes
are either structures or references. All non-leaf nodes of the tree
are structures, and the nodes immediately beneath them in the tree
are called their subnodes. Empty structures can be at the leaves of
the tree, and can be thought of as “atoms”. References are only at
the leaves of the tree, and are linked to a source node. The value
of a reference is found by chasing links through references until a
structure is found.

Some nodes are built-in originally, but new nodes are created
only by copying old ones. A copy operation takes a parent node
and creates a child node, which is inserted at a specified position
within some existing structure. Copying duplicates the entire
subtree below the parent into the child, causing nested copies of
all the subnodes. Copies of primitive functions also inherit their
built-in behavior.

Having reviewed this terminology, we can now state the primary
properties of copying: it is isomorphic, continual, and higher-
order. We will defer discussion of higher-order copying until
§4.5.

Copying is isomorphic: it preserves internal link structure. If a
reference in the subtree of the parent has a source that is also in
the subtree, then the copy of the reference will be linked to the
copy of the source. References with sources outside the parent
subtree will be linked to the same source. Link isomorphism is
simulated in textual languages with hierarchical name scoping.
Subtext eliminates the need to declare scopes: links establish their

own scopes implicitly as the least upper bound in the tree of their
target and source.

Copying is continual: changes project bi-directionally between
copies, keeping them isomorphic. Change projection is selectively
blocked to allow copies to diverge from each other. There are
three basic kinds of change that are projected: inserting a copy,
deleting a node, and modifying a reference.

One way to block change projection is to declare that a child is a
variant of its parent. Changes made within the subtree of the child
will not project to the parent, and are called divergences. Changes
made within the parent will continue to project into the child,
unless they are overridden by a divergence. In particular,
modifying a reference link overrides modifications to the parent
reference. This is similar to modification in prototype-based
languages (§5.1).

Divergence also occurs outside variants. References can be
designated as inputs, which means that changing their link is
considered a divergence even if they are not in a variant.
Automatic divergence of inputs allows each call of a function to
have different input links.

Divergence can be revised. It is possible to revert a node so that
all its contained divergences are undone (sort of a structurally
local undo). It is also possible to equalize divergences,
propagating the changes up to the parent.

4.1 Reactive Computation
Execution in Subtext is driven by reaction to change. We have
just described how structural changes (insertion, deletion, and
linking) project through copy relationships between parents and
children. However there is another kind of change: changing the
link of a reference can change its value. Changes to values
cascade down links and through primitive functions. Reaction to
value change in this way is traditional data flow computation. The
difference with traditional data flow is the extra dimension of
“copy flow”, particularly because copying replaces calling.

Traditional programming languages have three syntactically
distinct ways of passing data: literals, variables, and function
returns. Subtext combines all three of these into the single
mechanism of a link. The role a link plays is determined by its
direction in the tree structure. A link that refers downward is a
function return1. A link that refers upward within a function is a
variable reference. A link that refers upward outside the function,
but within a containing function, is a free variable captured in a
closure2. A link that refers upward through all containing
functions is a global parameter (if to a reference) or a literal
constant (if to a structure). A link can shift between these roles
simply by moving its source to different locations. The same
shifts require a coordinated series of edits in a textual notation.

1 Multiple return values are allowed without the usual constraint

of conventional languages that they all be bundled together at a
“point of return”.

2 Closures may be so puzzling because of the way they straddle
static lexical structure and dynamic call structure. These
structures become one in Subtext.

4.2 Dereferencing
An important feature of linking has been ignored up to this point.
Links can pass “through” references, navigating into the subtree
of the referenced structure. Such links are called dereferencing
links. They are often represented in textual languages with
“dotted paths” of names.

The Subtext UI makes dereferences seem like regular links. Any
reference node can be expanded in the same way that structures
are. The subnodes of the referenced value are displayed on
following indented lines, like the subnodes of a structure would
be, except with a rectangular envelope drawn around them. The
subnodes displayed in this way are called dereferenced nodes.
The reference envelope is in a sense an embedded window on the
referenced value. Naturally, dereference expansions can be
nested, producing nested indented envelopes. Figure 8 shows an
example of a function that calculates the payroll of an Employee
structure which is passed by reference. The reference is expanded,
and dereferencing links are made directly to the dereferenced
nodes.

reference envelope (blue)dereferencing links

Figure 8. Dereferencing

When the value of a reference changes, any links that pass
through that reference must be changed to follow the “same path”.
Textual languages handle this by using symbolic node lookup at
run-time to navigate the path. But Subtext eliminates delayed
binding, so another mechanism must be used. The key idea is to
define what it is that makes paths the “same”, based on the
concept of node identity introduced below.

4.3 Ancestral Node Identity
The traditional method for determining whether two elements of a
structure are the same is that their names are spelled the same.
Subtext captures a deeper notion of identity, based on
ancestry.

Let us start with a structure containing some nodes of interest.
Instances of that structure are created by copying it, which
automatically creates nested copies of all the subnodes. These
copied subnodes are considered to be identical to the originals.
But only nested copies are identical – top-level copies create new
node identities. Nested copying generates an equivalence relation
on nodes which defines identity.

This notion of identity is not affected by changing the spelling of
node labels, nor by inserting or deleting nodes. A variant can thus
rename, extend or contract the nodes defined in its parent.

We can now state how dereferencing links are affected by
changes to references: they follow the same path of nodes, as
determined by node identity. This maintains the principle of
isomorphism of links, only modulo node identity. There is a
problem, however, if one of the nodes along the path is missing.
In this case, a special ghost node with the correct identity is
inserted to preserve the path of the link. A ghost node is

highlighted in the UI as an error (usefully pinpointing it), and the
link itself will carry an error value. Ghost nodes preserve the
overt model of links even when they are broken.

Dereferencing links are another example of the principle of
abstraction without indirection. Rather than deferring resolution
of meaning with run-time node look-ups, the meaning is
established immediately and visibly, and then changed as needed
contextually.

4.4 Merging
So far we have seen how a single parent node can spawn a tree of
children. It is more powerful to allow nodes to be merged from
multiple parents.

Every node has a list of parents. Parents can be inserted, deleted,
and replaced in this list. A node has a single parent when it is first
created by copying. A structure will contain a copy of every
subnode of every parent, with identical subnodes recursively
merged together. The order of subnodes within a child structure
preserves the order within each of the parents, extended where
needed by the merge-order of the parents. References with
multiple parents are linked based on the overriding rules
described below.

Historically, there have been two kinds of primitive data structure
in programming languages: lists and records. Subtext provides a
novel alternative: ancestral structures, which blend features of
both lists and records. Like lists, structures in Subtext provide a
traversable order on their subnodes, and support insertion and
deletion. Concatenation (between disjoint lists) is provided by
merging. Unlike lists, Subtext provides an insertion-invariant
notion of position based on ancestral identity.

Like records (and their inheritors, classes) Subtext allows
position-insensitive random access to nodes, and node
extensibility. Unlike records, no confusion is possible due to
misspellings or homonyms (different names with the same
spelling). The identity of nodes is determined definitively by their
ancestry, irrespective of spelling. Merging allows structures to
be combined as with multiple inheritance, but without the
riddle of homonyms. [32]

References can only have one link. When they are merged from
multiple parents, overriding rules determine which parent
dominates, or if there is a conflict. An example of merging is
shown in Figure 9. A diamond-shaped parent graph is constructed
with Employee at the top, Manager and Part-time Employee as its
children, and Part-time Manager as the merged grandchild. The
parent of a node is displayed when it is expanded, similarly to a
reference’s link, with a label and a compass, and additionally
indicating whether it is a copy or variant3. Non-divergent
(unmodified) nodes are displayed in green, indicating that they
are “inherited” or “defaulted” from their parent. The salary node
of both Manager and Part-time Employee was modified, causing a
conflict error when they are merged in Part-time Manager. The
deductions node was modified in Part-time Employee, but inherited

3 An alternative tabular presentation for parental relationships is

proposed in §6.2.

in Manager, so Part-time Manager inherits the overriding
modification.

inherited nodes (green)

parent links

merge conflict

modified nodes (black)

Figure 9. Merging

The rules for overriding are similar to that of traditional software
revision control systems. Merging provides built-in version
control for free4. The same mechanism behind multiple
inheritance also serves to merge versions of code. Better,
Subtext provides exact version control. Version control based on
textual comparison can only correlate versions heuristically,
whereas Subtext knows the precise history and ancestral
relationships, down to the node level.

Note that with the addition of merging, we have also introduced
the ability to change the parents of a node: new parents can be
added, and old parents can be deleted or replaced. Change to
parentage is governed by the principle of conservation of
divergence: divergences in the child are preserved. For example,
if a parent is deleted, subnodes copied from it are also deleted,
unless they are divergent. A divergent subnode will not be
deleted, but instead will turn into a node insertion (maintaining
the same node identity). Another way of describing this principle
is that when a node’s parents change, it maintains a constant delta
relative to them, with this delta being defined by the divergences.

4.5 Higher-order Copying
There are two kinds of relationships in Subtext: copying and
linking. Linking can be seen as a special kind of copying, and
copying in turn can be seen as a relationship subject to copying
itself. This generalization is called higher-order copying. Higher-
order copying provides a simpler and more powerful
foundation for Subtext.

A hint can be seen in the way that references are presented
visually. A reference to a value is expanded into an indented
structure (in the reference envelope) that looks much like
inserting a copy of the linked value. In fact a reference to a value
can be seen as a copy of the value, except for the semantics of
equality. The Equality function must consider two references to
the same value to be equal, while normal copies would be
considered distinct. Such “referential copies” are not allowed to
diverge. Thus references can be seen as a special case of copying.

Copies map the structure of links isomorphically, so if a link is a
copy, then the structure of copies must also be mapped
isomorphically. A simplistic example is shown in Figure 10. The
CEO node of a Company is by default a copy of the Chairman

4 Currently only variants are tracked, but revisions are include in

the support for mutable state proposed in §6.3.

node. The FooCorp instance of Company inherits this internal copy
relationship. Changing the salary of FooCorp’s Chairman changes
the default CEO salary. Dotted arcs have been added to the
screenshot to show the inheritance of node values. Note how the
FooCorp CEO deductions node inherits from both FooCorp
Chairman and Company CEO, with modifications to the former
overriding the latter. Higher-order copying results in such multi-
dimensional relationships.

copied parent link

modified node

value
inheritance

Figure 10. Higher-order Copying

Higher-order copying allows the parent of a structure to be a
reference, making that structure a copy of the value of the
reference. If the value of the reference is a function, the child
becomes a higher-order function call. Higher-order copies yield
higher-order functions.

Subtext provides higher-order functions while maintaining the
principle of abstraction without indirection. In the definition of
the higher-order code, the function-valued reference will have
some default value, and the higher-order call will be an inlined
example of calling that default function. This maintains overt
semantics while permitting higher-order abstraction.

Higher-order functions in Subtext have a novel property called
ancestral signatures. Untyped higher-order languages require
only that function values match in the number of arguments with
the caller. Typed higher-order languages further require a match
of the function’s type signature. In Subtext, ancestral node
identity is used to establish compatible function signatures.
Compatible functions are like compatible classes: derived by
extension or merging from a common prototype function, not just
accidental alignment of the number and types of the arguments.

4.6 Copying as the Essence of Programming
The unification of linking with higher-order copying boils Subtext
down to one essential ingredient: copying. Subtext is higher-order
continual copying of trees. The simple idea of copying turns out
to be rich and subtle enough to generate an abstract model of
computation as well as a model of programming itself.

Data flow and copy flow (§4.1) become one: the driving force of
computation in Subtext becomes solely projection of changes
through copies. It is interesting to contrast the resulting model of
computation with the classical theory of Lambda Calculus [2].

The driving force of computation in Lambda Calculus is
reduction, which is implemented by name-sensitive substitution.
Substitution can be seen as a form of copying (with the name-
sensitivity ensuring isomorphism). The difference between
Subtext and Lambda Calculus is in when the copying happens.
Lambda Calculus programs execute by copying, consuming the
program in the process, until it is reduced to a result. Subtext
programs are built by copying, but execute reactively by change
projection, leaving the program intact and continuously executing,
and thus making its semantics overt.

Copying provides not just a model of computation, but a model of
the entire programming process. What a program does and what a
programmer does are the same: manipulate copying. It is
significant that copying is actually the way programmers tend to
work in practice – a good omen for the goal of usability. Further,
the unification of computation and programming provides novel
synergies. For example, merging implements both multiple
inheritance and version-control. A number of the proposed future
research directions (§6) explore such synergies.

The unification offered by Subtext has a major usability benefit:
simplification. Conventional programming involves a formidable
array of specialized tools and languages and formalisms. Every
one of these seems to have its own style of IF statement. Subtext
reduces the baroque complexity of textual programming into
a seamless environment with a single conceptual framework.
There is no longer a need for a distinct compiler, debugger,
interactive shell, unit-tester, program builder, or version-control
system: programming becomes mode-less. There is no conceptual
difference between edit-time and run-time, code and data, syntax
and semantics. Calling, referring, instantiating, sharing, refining,
modularizing, and versioning all become forms of copying. The
ultimate usability feature is coherence.

5. RELATED WORK
Subtext builds upon many related efforts throughout the history of
programming languages. There is only enough space here to
discuss the most prominent figures in this heritage. Foremost is
Self [40][41], which first proposed that copying (in the guise of
prototypes) could provide a unifying basis of both a programming
language and its interactive environment. Self promulgated the
principles of “concreteness, uniformity, and flexibility” [34] and
immediacy [39]. Subtext is in large part an attempt to carry
forward the pioneering vision of Self.

5.1 Prototypes
Subtext’s essential mechanism of copying is a generalization of
prototypes [22][27]. Self [34][40][41] developed prototypes the
furthest into a full fledged programming language and
environment. Many flavors of prototypes were proposed, with
different mixtures of sharing, modification, and delegation.
Subtext tries to hide such implementation issues behind a simple
model of distinct copies linked through change projection.
Subtext generalizes prototypical copying to include function
calling and even variable valuation. Although prototypes served
as living data instances, code was still relegated to the
netherworld of dead text awaiting execution. Subtext extends
prototypes “all the way down” into the fabric of the code itself,
making it is alive as data. The prototype languages were all
object-oriented, whereas Subtext is functional, modeling

computation as reactive structures. Subtext could be described as
functional prototypes.

5.2 Visual Programming
There is a long history of research in Visual Programming
Languages [6][25], so-called because they used diagrammatic
rather than textual representations of programs. The early results
were disappointing [13][30]. A common criticism was that
diagrams did not scale well to large programs, resulting in
incomprehensible mazes of boxes and lines, and laborious manual
layout. Diagrams are good at compactly summarizing
information, but are not well suited to highly detailed and large
scale descriptions. Text is in fact quite densely detailed and has
highly evolved conventions for large scale organization. The jury
is still out as to whether Subtext can avoid the scaling limitations
of visual languages. There is some reason for hope, because the
Subtext UI is largely textual with only graphical embellishment,
and so it can fall back on proven techniques for scaling text.

From the point of view of Subtext, diagrams and text are equally
limited by being paper-centric, conflating the issues of instructing
compilers with human communication. Subtext uses both text and
graphics, but only as user-interface techniques, which is what
they are good for; not as a semantic model, for which they are
poorly suited. This separation of concerns frees Subtext from the
constraints of paper, for example allowing execution details to be
melded with the static representation of a program.

Some visual languages also revealed live execution details, but
not while also supporting iteration or recursion. An exception was
Pictorial Janus [17]. It had a unified representation of programs
and their execution, supported recursion as infinite containment,
and replaced names with topological properties. However its
imperative semantics meant that while you could animate
program execution, you could not see a program and its execution
at once, an important usability goal of Subtext.

Vital [14] is a visual environment for Haskell. Function results
(but not their internal execution details) are presented
continuously. Lazy execution is triggered when results are
scrolled into view within an unbounded workspace. Type-driven
stylesheets alter the presentation. Vital is most similar to Subtext
when dealing with data structures, which can be edited through
copy-and-paste operations that correspondingly alter their
definitions.

Subtext is related in many ways to Forms/3 [5], one of the most
advanced visual languages. Forms/3 extends the familiar
spreadsheet into a first-order functional programming language.
In this way programming obtains the usability benefits of
spreadsheets, such as liveness [15][36]. General purpose
programming concepts are cleverly, but intricately, simulated
within the spreadsheet metaphor. For example, abstract functions
involve deductive inference to properly link call-sites and call-
frames. Subtext shares with Forms/3 the principle that human
factors should guide programming language design. The basic
difference is that Forms/3 tries to coerce a spreadsheet into a
programming language, while Subtext tries to invent a
programming language that is like a spreadsheet.

The modularity mechanism of Forms/3 is called similarity
inheritance [10]. It replaced the symbolic relationship of
inheritance with continual copying relationships, established

through cut-and-paste operations, resulting in “self-sufficiency”.
This may have been the first proposal of Subtext’s principle of
abstraction without indirection. Similarity inheritance was limited
to static sharing of formulas between spreadsheet forms. Subtext’s
more general copying mechanism replaces all forms of sharing
and reference, and implements computation as well.

5.3 Ergonomic Programming
There is increasing focus on human factors as the critical issue in
the design of programming languages and tools [21]. Subtext has
been guided by the principles of the Cognitive Dimensions
framework [13] and the Attention Investment model [4]. An
application of these principles to the design of abstract functions
in a spreadsheet [16] led to some similarities with the way
functions are called by copying in Subtext.

Copy & paste operations are pervasive in actual programming
practice [19]. Linked editing [37] proposed text-editor support for
continual copying of text regions, and studied its use as a
surrogate for functional abstraction in the language. Subtext uses
continual copying within a richer structure than text to entirely
replace symbolic abstraction.

5.4 Programming by Demonstration
Programming by Demonstration [8][24] seeks to let the
programmer live in a world of concrete examples, with the
computer intelligently abstracting these examples into general
purpose programs. The most closely related work in this node is
Tinker [23], which allowed both its recorded examples and
generated Lisp code to be incrementally edited. Subtext also taps
into the power of examples to tame abstraction, but not so much
to make the computer seem smarter, as to help the programmer
work smarter. Nevertheless, Subtext should provide a good
platform for such research, allowing examples and their
abstractions to be recorded and represented commensurably.

5.5 Syntax-directed Editing
Subtext bears some resemblance to syntax-directed editors
[31][35]. These editors had built-in knowledge of the language
syntax, so that instead of editing a string of characters, the
programmer was directly editing the abstract syntax tree (AST).
New code would be added via templates with blank nodes
corresponding to the production rules of the grammar. The
program was kept syntactically valid at all times, and
syntactically-specific editing assistance was provided. Syntax-
directed editors met resistance from practicing programmers [26].
A common complaint was that forcing the program to be
syntactically valid at all times blocked well-worn shortcuts
through invalid states. The compromise that has emerged in
modern programming editors is to maintain a textual
representation, but to add syntactic and semantic assistance “on
the side”. This assistance is provided on a best-effort basis
through such mechanisms as coloring, completion, and pop-ups.

The goal of Subtext is not to make syntax easier to use, but to
avoid having to use it in the first place. In fact humans have a
well-developed and largely subconscious ability to parse
language. Syntax-directed editing trades this subconscious facility
for the conscious manipulation of explicit structure, structure
which is mostly about signaling the compiler, not expressing the

meaning of the program. This is a loss in usability: if it is
necessary to use syntax it should be left implicit as in natural
languages. But even better is to do away with the middle-man of
grammar altogether. Grammar is fundamentally about encoding
meaning into a serial channel, which is no longer needed once we
have evolved to direct manipulation. Subtext is semantics-
directed editing.

Intentional Programming [9] appears to be related to Subtext,
although it is hard to tell precisely since only partial descriptions
of it have been published. It seems to be a form of syntax-directed
editing that does not block character-based editing shortcuts.
Compatibility with (and extension of) mainstream languages is a
primary goal. The underlying model appears to be a
generalization of an abstract syntax tree. Names are abstracted
into binding relationships. Specialized notations can be
embedded, much like embedding a diagram in a WYSIWYG
word processor document. This allows extension through
presentation, but all the notations are still paper-centric. Subtext
shares the goal of WYSIWYG programming, but rejects the
constraints of backward compatibility with old languages and
hard copy.

5.6 Functional Programming
Subtext is in spirit a functional programming language, harkening
back to the original call of Backus [1] to liberate programming
from its hardware roots. One of Backus’ goals was to lessen the
dependency on names, a goal shared by Subtext, but not carried
forward in the subsequent development of functional languages.
Modern functional programming languages have demonstrated
the power of sophisticated high-level abstractions. Subtext is
trying to find ways to make such abstraction easier to use.

6. FUTURE WORK
Subtext is a young idea, perhaps no more mature than the first
experiments with compilers in the 1950’s. Subtext is like
starting over from the beginning with an alternative to
punched cards. The initial prototype merely demonstrates that
programming in this alternative medium is possible, and holds
promise. Exploring the potential of the approach will require
much further research and development.

Here are just some of the challenges and opportunities:

1. Performance. The design of Subtext has so far fearlessly
ignored performance issues in order to optimize for usability.
Scalable implementation will offer interesting challenges.

2. User interface design and usability testing. Subtext must
compete with the highly evolved and deeply entrenched user
interface of text editing. Quite a few programmers have
assured the author that they will give up Emacs when it is
pried from their cold dead hands.

3. Programming in the large. The disappointing track-record of
visual languages justifies skepticism that any non-textual
language can scale to real-world programs. Subtext must
convincingly address this issue to be taken seriously.
Because the Subtext UI is largely textual, scaling techniques
proven for textual languages can be applied. In particular,
traditional hierarchical decomposition ought to fit well with
the tree structure of Subtext.

4. Formalization. The theory of copying needs to be formalized
in order to better understand its properties and expressive
power.

5. Types. What is the role of types in a language without a
compile-time, where self-executing definitions automatically
flush out many common type errors?

6. Modularity. Modularity [28] is a precept of software design,
while undisciplined copying is often considered its
antithesis. Subtext offers a third way: ad-hoc copies which
are recorded, and which can propagate changes. The chaos
created by covert copying can be replaced with tools that
manage copying and supervise change propagation.
Modularity, rather than the antithesis of copying, can be seen
as a special pattern of copying, one which can be refactored
out of ad-hoc patterns.

7. Refactoring and code transformations. Subtext allows some
major refactorings to be replaced by direct-manipulation
operations such as dragging nodes to change their location.
Code transformations like splicing can also become direct
manipulations. A taxonomy of useful refactorings and
transformations needs to be developed and correlated with
UI affordances.

8. Databases. With the addition of declarative queries, Subtext
would become a database. This offers a new take on the
infamous “impedance mismatch” problem [7]: the clash
between the data models of the language and the database;
which become identical in Subtext.

9. Meta-programming. Subtext can be made fully reflective,
and implemented meta-circularly. Reactive computation plus
declarative queries may enable novel meta-programming
capabilities. Do meta-queries support Aspect Oriented
Programming [18]? What is the potential for Domain
Specific Languages in Subtext?

The second version of Subtext is currently under development,
and is the source of the screenshots in this paper. This version
implements the model of higher-order copying, and focuses on the
ideas discussed in the following three subsections.

6.1 Functional Iteration
There is a long-standing dispute between recursion and iteration.
Recursion is more elegant formally, but many programmers find
iteration to be simpler. Subtext reconciles iteration and
recursion by offering iteration as a presentation of recursion.

This presentation is called functional iteration. The basic idea is
to flatten a singly-recursive function into a linear scrolling-
window display, with each recursive call occurring vertically
below, rather than nested within, its caller. Links that drill in and
out of recursive calls would now hop between these “steps”.
Links passing between the same node in adjacent steps (called
chained links) would display as vertical vectors, and be labeled
next or previous. This presentation would be most effective when
at least three steps were visible, so that all the links in and out of
the middle one were fully visible.

Functional iteration promises the best of both worlds: the
simple semantics of functional recursion with the simple
conceptual model of imperative iteration. It can support
capabilities of stream-processing languages such as Lucid [42]
and Lisp Series [44]. While these languages manipulated streams
of data, Subtext will manipulate streams of code. Chained links
propagate variable values up and down these streams, providing
the convenience of side-effecting assignment as in imperative
iteration, but without violating single-assignment semantics.
Functional iteration can be implemented largely as a presentation
on top of the existing model of recursion.

6.2 Adaptive Conditionals
Adaptive conditionals are a new kind of conditional construct that
exploits the higher-order features of Subtext. The intuition is this:
when we informally describe a complex process, we tend to first
explain a basic case of the entire process. Then we come back and
explain how special cases differ from the basic case: “except
when A do B instead of C ”. To implement such an informal
description using normal conditionals, we must disentangle the
interrelated exceptions into a linear logical flow, producing a
recipe a computer can follow. An adaptive conditional is
different: it lets you write the program just like the informal
description, and delegates the job of producing a recipe to the
compiler.

You start by implementing the simple base case as a function. A
special case is implemented by making a variant of the base case.
This variant is edited to implement the exceptions in the informal
description, literally replacing the code for C with code for B.
There are now two functions: the base case, and a variant case.
What we need to do is somehow blend these two functions
together into a single function that does the right thing in all
cases. To do this, we introduce predicates.

A predicate is a special Boolean-valued function. The simplest
kind of predicate is to test whether two nodes are equal.
Predicates conditionalize merging. When a child structure is
merged from multiple parents, any of the parents containing a
false predicate will be masked. Returning to the example, we
must insert a predicate into the variant case that is true when A.
Now merging the base case and the variant case produces a
function with the right behavior. If A is false, the merge is equal
to the base case. If A is true, the merge is equal to the variant,
since all its edits override the base case in the merge. Adaptive
conditionals merge code variants conditionally – like “run-
time version-control”.

Adaptive conditionals will be supported by a special presentation
called a case table, somewhat reminiscent of decision tables [20].
Figure 11 shows a mock-up. The rows of the table are nodes and
the columns are cases. Differences between the cases are
indicated by background coloring (this will also be used as a
general difference visualization). A factorial function is shown
implemented by two cases. The basic case contains the recursion.
That case is overridden by a zero case triggered by a 0 input,
setting the result node to 1. The zero case is false in this call.

Conditional

? 0
recurse zero

false predicate
(red)

false case (red)

masked node
(gray)

true case (green)

Figure 11. Adaptive Conditional

Adaptive conditionals are an extreme experiment, but with
interesting potential benefits:

1. Normal conditionals must often be duplicated in multiple
places, coordinated by a shared Boolean flag. Adaptive
conditionals combine variations at scattered locations into a
single variant case, capturing the meaning without redundant
notation.

2. Predicates are similar to guarded expressions and pattern
matching in functional languages [38], which can be a
succinct form of expression.

3. It is easier to see the conditional logic of a program because
it is moved into an orthogonal dimension from the rest of the
program’s structure. Conditional expressions, like choice, are
intertwined with data flows. Conditional statements are more
distinctive, with keywords and bracketed blocks, but block
structure is overloaded for many other purposes. Adaptive
conditionals use the “3rd dimension” of case table columns.

4. Cases can easily cause a conflict error by modifying the
same node. This is not a bug, it is a feature. It indicates a
combination of cases the programmer has ignored. The
situation can be resolved by adding another case merging the
conflicting ones and resolving the dispute. Normal
conditionals are orthogonal: in every possible situation they
will produce some result, perhaps incorrectly. The
programmer must consider all these possibilities up front.
Adaptive conditionals allow design decisions to be divided
and conquered.

5. Adaptation supports intercession into code somewhat like
Aspect Oriented Programming [18].

6. Conditional cases directly map to specific examples, and can
be created directly from such examples [11].

7. Informal specifications are naturally expressed as tangled
exceptions that can be directly modeled by adaptive
conditionals. The conceptual gulf between the language of
specification and the language of implementation is
narrowed.

8. It is simpler and more concrete to create variants of code
with different behavior than to abstract a single version of
the code with conditional logic. Proper abstraction, if it is
necessary, can be deferred to later refactoring. Adaptive
conditionals reduce the cognitive burden of abstracting
dynamic behavior.

6.3 Mutable State
Mutable state is a major dilemma of programming language
design. Functional languages have avoided it for good reason (the
chaos of side-effects), but at great cost in complexity (for example
monads [43]). Usability mandates support of mutable state
simply because it is so deeply entrenched in common sense.

The approach being explored involves recording the history of all
changes so that complete copies of past states of the system
appear to have been recorded. Copying is Subtext’s forte, and it
already has the ability to lazily instantiate copies with differences
– exactly what an implementation of history recording requires. A
scalable implementation would also need the ability to “forget”
the details of history, replacing them with summarizations.
Recording and forgetting history may seem a hopelessly
inefficient scheme, but perhaps no more so than garbage
collection seemed 30 years ago.

Subtext would thus reduce mutable state to copying (as with just
about everything else). The challenge is to support a common
sense notion of mutable state while maintaining the benefits of the
complete static visibility of program dynamics. How can a
program mutate state when there is no such thing as run-time?
Subtext proposes actions: functions that take a reference to any
subtree (called the input state), and produce an output state that is
a modified copy of the input. The input state of an action is by
default the current global state. The output of such an action is
thus a potential future state, which visibly reveals what the
action’s effects would be, were it to be executed. Executing an
action turns its potential future into the actual present. Note that
actions are themselves part of the global state, and thus create
recursive copies of the global state. Time is modeled as global
recursion. Time is partially ordered: actions can be wired up in
“state-flow” graphs to perform parallel computation free of
implicit side-effects. This approach combines the clear
semantics of functional programming with a common sense
notion of mutable state. It will be up to specialized presentations
to display history, futures, and state-flow in a simple and concrete
way.

7. CONCLUSION
The exceptional difficulty of programming is in large part due to
encoding programs as text strings, a design cemented in the very
first programming languages. We have gotten as far as text will
take us. The metaphor of programming as writing is no longer
helpful.

Subtext offers an alternative medium to text, one designed from
scratch to make programming easier by shortening mental leaps.
The representation of a program is the same thing as its execution:
syntax overtly aligns with semantics. Relationships are direct, not
intermediated by delayed binding of symbols. Editing is coherent
transformation of semantics. The essence of this new medium is
copying: higher-order continual copying of trees generates a
unified theory of both computation and programming. The
traditional assortment of programming tools and formalisms
collapses into one seamless workspace, with a simple and
consistent conceptual model. Programming becomes more akin to
using a spreadsheet than a keypunch.

Subtext is a fresh start. The initial prototype shows promise, but
is still nascent. Much work, and risk, is left: Subtext opens up a
whole new territory to explore. There is hope that we can make
programming fundamentally easier.

8. ACKNOWLEDGEMENTS
Daniel Jackson, Rob Miller, Derek Rayside, Rob Seater, and
Emina Torlak provided helpful discussions, and the Software
Design Group at MIT provided a creative environment. The
anonymous referees provided constructive criticism.

9. REFERENCES
[1] Backus, J. Can Programming be Liberated From the von

Neumann Style?: A Functional Style and its Algebra of
Programs. Commun. ACM 21, 8 (1978) 613-641.

[2] Barendregt, H. P. The Lambda Calculus. Elsevier, 1984.
[3] Beck, K. Test-Driven Development: By Example. Addison-

Wesley 2002.
[4] Blackwell, A. First Steps in Programming: A Rationale for

Attention Investment Models. In Proc. of the IEEE 2002
Symposia on Human Centric Computing Languages and
Environments (HCC'02) (Arlington, VA, Sep. 2002) 2-10.

[5] Burnett, M., Atwood, J., Djang, R., Gottfried, H., Reichwein,
J., Yang, S., Forms/3: A First-Order Visual Language to
Explore the Boundaries of the Spreadsheet Paradigm. In
Journal of Functional Programming 11, 2 (March 2001).

[6] Burnett, M., Goldberg, A., Lewis, T. Visual Object-Oriented
Programming: Concepts and Environments. Manning,
Greenwich, CT, 1995.

[7] Copeland, G., Maier, D. Making smalltalk a database
system. In Proceedings of the 1984 ACM SIGMOD
international Conference on Management of Data (Boston,
Massachusetts, June 18 - 21, 1984).

[8] Cypher, A. Watch What I Do: Programming by
Demonstration. MIT Press, Cambridge, MA. 1993

[9] Czarnecki, K., Eisenecker, U. W. Intentional Programming.
Chapter 11 in Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, 2000.

[10] Djang, R., Burnett, M. Similarity Inheritance: A New Model
of Inheritance for Spreadsheet VPLs. In 1998 IEEE Symp.
Visual Languages (Halifax, Canada, Sep. 1998) 134-141.

[11] Edwards, J. Example Centric Programming. In Companion
to the 19th annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications
(OOPSLA ’04 Onward) (Vancouver, BC, CANADA) 124.
http://subtextual.org/OOPSLA04.pdf

[12] Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[13] Green, T. R. G., Petre, M. Usability Analysis of Visual
Programming Environments: a ‘cognitive dimensions’
framework. Journal of Visual Languages and Computing 7,
2, 131-174.

[14] Hanna, K. Interactive Visual Functional Programming. In
Proceedings of the Seventh ACM SIGPLAN international

[29] Norman, D. A. The Design of Everyday Things. Basic Books,
New York, 1988.

Conference on Functional Programming (Pittsburgh, PA,
USA, October, 2002).

[30] Petre, M. Why Looking Isn’t Always Seeing: Readership
Skills and Graphical Programming. Comm. ACM 38, 6 (June
1995) 33-44.

[15] Ingalls, D., Wallace, S., Chow, Y., Ludolph, F., Doyle, K.
Fabrik: A Visual Programming Environment. In Conference
proceedings on Object-oriented programming systems,
languages and applications(OOPSLA ’88) (San Diego,
California, United States, Sep. 1988) 176 – 190.

[31] Reps, T., Teitelbaum, T. The Synthesizer Generator: A
System for Constructing Language-based Editors. Springer-
Verlag, New York, 1988. [16] Jones, S. P., Burnett, M., Blackwell, A. A user-centred

approach to functions in Excel. In Proc International
Conference on Functional Programming (ICFP'03),
(Uppsala, Sweden, Sept 2003) 165-176.

[32] Schärli, N., Ducasse, S., Nierstrasz, O., Black, A. Traits:
Composable Units of Behavior. In Proc. of European
Conference on Object-Oriented Programming (ECOOP
2003), (July 2003), 248-274. [17] Kahn, K. M., Saraswat, V. A. Complete Visualization of

Concurrent Programs and Their Executions. In Proceedings
of the ICLP 1990 Workshop on Logic Programming
Environments, (Eilat, Israel, June 1990).

[33] Shneiderman, B. Direct Manipulation: A Step Beyond
Programming Languages. IEEE Computer 16, 8 (August,
1983) 57-69.

[18] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Videira Lopes, C., Loingtier, J.-M., and Irwin, J. Aspect-
Oriented Programming. In Proc. of European Conference on
Object-Oriented Programming (ECOOP 1997) (Jyväskylä,
Finland, 1997).

[34] Smith, R. B., Maloney, J., Ungar, D. The Self-4.0 user
interface: manifesting a system-wide vision of concreteness,
uniformity, and flexibility. In Proc. of the tenth annual
conference on Object-oriented programming systems,
languages, and applications (OOPSLA ’95) (Austin, Texas,
United States, 1995), 47-60. [19] Kim, M., Bergman, L., Lau, T., Notkin, D. An Ethnographic

Study of Copy and Paste Programming Practices in OOPL,.
In Proc. of the 2004 ACM-IEEE International Symposium on
Empirical Software Engineering (Redondo Beach, CA, Aug.
2004).

[35] Szwillus, G., Neal, L. (editors) Structure-based Editors and
Environments. Academic Press, San Diego, CA, 1996.

[36] Tanimoto, S.L. Towards a theory of progressive operators
for live visual programming environments. In Proc. of the
1990 IEEE Workshop on Visual Languages (Skokie, IL,
USA), 80-85.

[20] King, P. J. H. Decision Tables. Computer Journal 10, 2
(Aug. 1967) 135-142.

[21] Lewis, C., Olson, G. M. Can Principles of Cognition Lower
the Barriers to Programming? In Empirical Studies of
Programmers: Second Workshop (Washington D.C. 1987)
248-263.

[37] Toomim, M. Begel, A., Graham, S. L. Managing Duplicated
Code with Linked Editing. In 2004 IEEE Symposium on
Visual Languages - Human Centric Computing
(VLHCC'04)(Rome, Italy, Sep. 2004) 173-180.

[22] Lieberman, H. Using Prototypical Objects to Implement
Shared Behavior in Object-Oriented Systems. In Conference
proceedings on Object-oriented programming systems,
languages and applications (OOPSLA’86) (Portland,
Oregon, United States, 1986), 214-223.

[38] Turner, D. A. Miranda: A non-strict functional language with
ploymorphic types. In Proceedings IFIP International
Conference on Functional Programming Languages and
Computer Architecture, Nancy France, September 1985.

[39] Ungar, D., Lieberman, H., Fry, C. Debugging and the
experience of immediacy Commun. ACM, 40, 4, (April
1997), 38-43.

[23] Lieberman, H. Tinker: A Programming by Demonstration
System for Beginning Programmers. In [8].

[24] Lieberman, H.(editor) Your Wish is my Command:
Programming by Example. Morgan Kaufmann, San
Fransisco, CA, 2001.

[40] Ungar, D., Smith, R. B. Self: The power of simplicity. In
Conference proceedings on Object-oriented programming
systems, languages and applications (OOPSLA ‘87)
(Orlando, Florida, United States, Oct. 1987), 227-242. [25] Myers, B. Taxonomies of Visual Programming and Program

Visualization. Journal of Visual Languages and Computing
1, 1 (March 1990), 97-123.

[41] Ungar, D., Smith, R. B. Programming as an Experience: The
Inspiration for Self. In ECOOP '95 Conference Proceedings,
LNCS 952. Springer Verlag, 1995 [26] Neal, L. R. Cognition-sensitive design and user modeling for

syntax-directed editors. In Proc. of the SIGCHI/GI
conference on Human factors in computing systems and
graphics interface (Toronto, Ontario, Canada, 1987) 99-102

[42] Wadge, W. W., Ashcroft, E. A. Lucid, the Dataflow
Programming Language. Academic Press 1985.

[43] Wadler, P. The essence of functional programming. In 19th
Symposium on Principles of Programming Languages
(Albuquerque, NM, January, 1992).

[27] Noble, J., Taivalsaari, A., Moore, I. Prototype-Based
Programming: Concepts, Languages and Applications.
Springer-Verlag Telos, January, 1999.

[44] Waters, R. C. Series. In (Steele, G. L.) Common Lisp the
Language. Digital Press 1984[28] Parnas, D. L. On the criteria to be used in decomposing

systems into modules Commun. ACM 15, 12 (Dec. 1972)
1053-1058.

