
A. Java field tree solution

  static Tree generate(Tree in) {
    Tree tableContents = new Tree();
    for (Entry<Position, Object> e : 
        in.entrySet()) {
      // name of data field
      Tree c1Contents = new Tree();
      c1Contents.put(Position.c2, 
        e.getKey().toString());
      // input field loaded from data
      Tree c1 = new Tree();
      c1.put(Position.tag, "td");
      c1.put(Position.contents, c1Contents);
      Tree input = new Tree();
      input.put(Position.tag, "input");
      input.put(Position.type, "text");
      input.put(Position.value,
        in.get(e.getKey()));
      Tree c3Contents = new Tree();
      c3Contents.put(Position.c4, input);
      Tree c3 = new Tree();
      c3.put(Position.tag, "td");
      c3.put(Position.contents, c3Contents);
      Tree trContents = new Tree();
      trContents.put(Position.c1, c1);
      trContents.put(Position.c3, c3);
      // map to data's position
      Tree tr = new Tree();
      tr.put(Position.tag, "tr");
      tr.put(Position.contents, trContents);
      tableContents.put(e.getKey(), tr);
    }
    Tree out = new Tree();
    out.put(Position.tag, "table");
    out.put(Position.contents, tableContents);
    return out;
  }

  static Tree customize(Tree in) {
    Tree out = in.deepCopy();
    Tree contents = 
      (Tree) out.get(Position.contents);
    // move id field
    contents.put(Position.id2, 
      contents.remove(Position.id));
    // change name->customer
    Tree t = contents;
    t = (Tree) t.get(Position.name);
    t = (Tree) t.get(Position.contents);
    t = (Tree) t.get(Position.c1);
    t = (Tree) t.get(Position.contents);
    t.put(Position.c2, "customer");
    return out;
  }
}

import java.util.TreeMap;
import java.util.Map.Entry;

public class Main {
  // simulate database generation of symbolic 
  // position values
  enum Position {
    id, name, id2, phone, tag, contents, type, 
    value, c1, c2, c3, c4
  }

  /* Field trees are represented with a 
   * TreeMap<Position, Object>, where the 
   * Objects are either sub-trees or boxed leaf 
   * values.
   */
  static class Tree extends 
      TreeMap<Position, Object> {
    Tree deepCopy() {
      Tree copy = new Tree();
      for (Entry<Position, Object> e : 
          this.entrySet()) {
        if (e.getValue() instanceof Tree) {
          Tree value = 
            ((Tree) (e.getValue())).deepCopy();
          copy.put(e.getKey(), value);
        } else {
          copy.put(e.getKey(), e.getValue());
        }
      }
      return copy;
    }
  }

  public static void main(String[] args) {
    // Simulate load of data from database
    Tree data = new Tree();
    data.put(Position.id, "1234");
    data.put(Position.name, "John Smith");
    data.put(Position.phone, "555-1212");
    Tree form = generate(data); // generate
    Tree form2 = customize(form); // customize
  }



B. Differential Tree Semantics
This appendix defines the semantics of differential trees
as used in the paper. The goal is to precisely explain the
essential nature of differential trees, not to prove formal
properties, nor to model an actual implementation. A “big-
step” style is used that is mute about errors, lapsing into
undefinedness. The more complex small-step semantics in a
prior technical report [13] detects error conditions explicitly
and extends the semantics in several directions.

B.1 Definitions
We take a set of positions P containing the rationals Q,
Booleans B, characters C, and all position tuples 〈p1, . . . . . . pn〉.
Strings are character tuples. P also contains the predefined
positions add, map, valueName, in, with, out, body, and delete.
P has a total dense ordering ≤, which is consistent with the
natural orders of Q, B, C, and the dictionary order on tuples.
P contains extra positions in between all of the aforemen-
tioned ones to allow arbitrary insertions, but we will treat all
positions as preallocated here.

A Path is a finite non-empty sequence of positions, writ-
ten using the dot operator as p1. p2 . . . pn. Notation will be
abused to treat positions interchangeably with the singleton
path containing them, and the dot operator is overloaded to
append positions as well as concatenate paths. The length of
a path x is len(x). The last position of a path x is leaf(x).
The name of a position p is name(p), which is the empty
string for anonymous positions, and is the expected print
string for integers, Booleans, strings, and tuples.

B.2 Differential trees as relations
A differential tree over P can be seen as a subset of Path×
Mode × Path where each tuple represents a definition.
The left hand paths must be unique, and Mode is the set
{: , :: , := , ::=}. To express the semantics of differential trees,
we will add a natural number qualifying each definition,
called its provenance. Because definitions can be stacked at
multiple heights in the tree, inheritance can occur in multiple
overriding layers. A definition of a field x with provenance
n has been inherited from the definition of the nth container
of x, whose path is the prefix of x with length (len(x)− n).
If n = len(x), the definition is inherited from the root of
the tree, which means it is an initial definition specified by
the programmer. If n = 1, then the definition was inherited
from its immediate container. If n = 0, then the definition
was not inherited at all, but was internally computed by a
primitive function. The rule is that the definition with the
highest provenance overrides all others.

We express the semantics as inference rules on the rela-
tion | | ⊆ Path × N × Mode × Path where the natural
numbers are the provenances. This relation contains all the
initial definitions, with their provenance set to the length of
the left hand path, which guarantees they will override all
derived definitions.

Overriding is determined by the quaternary predicate d e
defined as:

dx n d ye ≡ |x n d y| ∧ ∀m. ( |x m | ⇒ m ≤ n )

B.3 Integration
Integration is defined by the single inference rule:

dx ye dy.z n d we n ≥ len(z)
|x.z len(z) d φ |

where φ =


x if w = y

x.u if ∃u |w = y.u

w otherwise

This rule states that if x is defined as the path y (after
overriding), and somewhere within y there is another defi-
nition, then the corresponding location within x will inherit
that definition, subject to two provisos. The first proviso is
that only definitions with a provenance at least as high as y
will be inherited from it. In other words, inheritance from
internal definitions within y will be ignored, since they will
be recapitulated within x, perhaps differently. The other pro-
viso is that the value of the definition to be inherited depends
on whether it is located within y or not, which is the condi-
tional definition of φ. If the value is located within y it is
mapped to the corresponding location within x. Otherwise it
is “captured” as is.

B.4 Primitive functions
Primitive functions are specified in additional rules that cre-
ate 0-provenance definitions, which prevents them from be-
ing inherited rather than being recalculated. Recall that func-
tion parameter fields can be linked to other fields with the :=
and ::= definition modes. The helper function ref determines
the value to be used, called the field’s reference, by chasing
down those links.

Determining the reference of a field involves another
complication: the value of a field is allowed to be a path
that traverses into a leaf node. The path beneath the leaf will
be followed starting at the value of the leaf. This means that
the value of the leaf is being “dereferenced” — allowing a
path to represent an arbitrary traversal of pointers within the
tree. Dereferencing is done by the loc helper function.

Note that dereferencing is deferred untill a function needs
it, rather than being taken care of during integration (as in
the implementation). What this means is that a leaf field,
defined by a : or := definition, may not physically be a
leaf: any substructure of its value will be copied into it, but
then later ignored by the loc function. This approach makes
the integration rule simpler, and in fact corresponds to the
conceptual model of the user interface, where a leaf can be
expanded to see the contents of its value, just as if it had been
copied into it.



loc(p) = p

loc(x.p) =


y.p if d loc(x) : ye
y.p if d loc(x) := ye
loc(x).p otherwise

where p ∈ P.

ref(x) =



y if d loc(x) : ye
y if d loc(x) :: ye
ref(y) if d loc(x) := ye
ref(y) if d loc(x) ::= ye
⊥ otherwise

The add function adds the values of its in and with fields
and sets the sum into its out field:

ref(x) = add ref(x.in) = n ∈ Q ref(x.with) = m ∈ Q
|x.out 0 : (n+m)|

The valueName function returns the name of the leaf of
the value of a location, which is often used to represent the
value symbolically in print strings and the UI.

ref(x) = valueName ref(x.in) = y dy ze
|x.out 0 : name(leaf(z))|

The map function rule fires for each non-deleted sub-
field p of its in parameter. It instantiates a copy of the func

parameter as body.p, binding its body.p.in parameter to the
sub-field. The output of the function is collected into out.p.
Unlike the implementation, deletions are not filtered out
immediately during integration, but later by the map and
other functions that enumerate sequences.

ref(x) = map p ∈ P
dx.in.p e ¬ dx.in.p := deletee

|x.body.p 0 :: x.func|
|x.body.p.in 0 := x.in.p|
|x.out.p 0 :: x.body.p.out|


