
No Ifs, Ands, or Buts
Uncovering the Simplicity of Conditionals

Jonathan Edwards
MIT Computer Science and Artificial Intelligence Lab

edwards@csail.mit.edu

Abstract
Schematic tables are a new representation for conditionals.
Roughly a cross between decision tables and data flow
graphs, they represent computation and decision-making
orthogonally. They unify the full range of conditional con-
structs, from if statements through pattern matching to poly-
morphic predicate dispatch. Program logic is maintained
in a declarative canonical form that enforces completeness
and disjointness among choices. Schematic tables can be
used either as a code specification/generation tool, or as a
self-contained diagrammatic programming language. They
give program logic the clarity of truth tables, and support
high-level direct manipulation of that logic, avoiding much
of the mental computation demanded by conventional con-
ditionals.

Categories and Subject Descriptors D.2.2 [Software En-
gineering]: Design Tools and Techniques—Decision tables;
D.2.6 [Software Engineering]: Programming Environments;
D.3.3 [Programming Languages]: Language Constructs and
Features—control structures, polymorphism; D.1.7 [Pro-
gramming Techniques]: Visual Programming

General Terms Languages

Keywords decision tables, control structures, polymor-
phism, visual programming, refactoring

1. Introduction
It is due to our choosing to accept or reject that we do
not see the true nature of things.
– Seng-ts’an, third Zen patriarch

Conditionals are the backbone of a program. They provide
the essential ability to execute different code in different

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00

situations, and they establish much of a program’s struc-
ture. The hardware-given conditional branch instruction has
evolved into a variety of programming language constructs:
nested if-then-else blocks; switch statements; pattern match-
ing in functional languages; and polymorphism1 in object-
oriented languages.

One reason for this variety of conditionals is that the most
basic and general one, the if-statement, is not completely sat-
isfactory. The structure of nested if-then-else blocks forms a
tree of decisions which we must mentally compile from our
informal understanding. Conversely, when we read nested
if-then-else blocks we must decompile the tree back into
a higher-level understanding. Walking down the tree, espe-
cially down else-branches, quickly becomes disorienting and
forces us to reason with deMorgan’s law. Making decisions
in the wrong order can lead to duplication of subsequent de-
cisions across branches. We often have to refactor the tree to
reduce duplication or to find a single resting spot for some
new logic. It is hard to tell whether a decision tree covers
all possible combinations of cases, and it is hard to tell how
different trees logically overlap. Graphical representations
of decision trees, such as flowcharts and Nassi-Shneiderman
diagrams [30], have the same problems. Studies of the diffi-
culties caused by control structures are surveyed in Pane and
Myers [32], p.30–31.

Newer forms of conditionals (switch statements, pattern
matching, and polymorphism) respond to these problems in
similar ways. They partition code into distinct cases and
declaratively specify the conditions in which to invoke them.
Declarative conditions tie the cases to data definitions, and
allow compile-time analysis to detect errors and offer as-
sistance in an Interactive Development Environment (IDE).
The compiler takes care of generating an executable decision
tree. However none of these constructs are flexible enough
to completely supplant if-statements, which are still needed
for the ad hoc glue logic which does not sort out along any
simple dimension. This paper introduces schematic tables,
a new representation that attempts to be flexible enough to
replace if-statements, and declarative enough to replace pat-

1 Throughout this paper, polymorphism will be taken to mean subtype
polymorphism.

tern matching and polymorphism, while making all of them
easier to understand, and easier to manipulate.

Truth tables have long been used to express logic more
clearly than symbolic propositions. A number of tabular
specification languages have been found beneficial [16, 18,
24]. Decision tables [34, 39] have been used both for specifi-
cations [13] and as a programming language feature [36, 38].
Figure 1 shows an example of a decision table from Kirk
[22].

Decision tables express complex logic clearly, but suf-
fer from a number of limitations that have impeded their
adoption. Composing decision tables leads to a combina-
torial explosion, and worse, the tacit duplication of logic
and decisions. The response of splitting and nesting tables
re-establishes the tree structure of if-statements, with all
its disadvantages. Tables require that exactly one column
be true in all cases, a constraint that can be hard to main-
tain. A study [15] comparing decision tables to if-statements
found the former to be preferred but less accurate. Another
study [41] found decision tables inferior to English struc-
tured by if-statements for comprehension tasks. It is inter-
esting that a study [14] comparing textual and graphical pro-
gramming notations used an apparatus similar to decision
tables as the reference point. Overshadowing these issues is
the fundamental limitation of decision tables: they are not
complete programs. We must add code to evaluate condi-
tions and execute actions, and we must structure that code
to interface with the table. The program is torn between two
worlds. Schematic tables attempt to generalize decision ta-
bles into a self-sufficient programming language.

The key ideas of schematic tables are:

1. Computation and logic are represented orthogonally, in
the vertical and horizontal dimensions of a table, separat-
ing their different semantics.

2. The two dimensions of tables provide an extra degree
of freedom over textual syntax for structuring code, and
reduce the need to split up related code.

3. Maintenance of a single logical invariant (partitioning),
drives high level semantic transformations that reduce
programming effort.

4. Schematic tables are canonical, in a certain sense repre-
senting equivalent programs equivalently. Diagrammatic
notation is made feasible by eliminating manual layout.
The need for refactoring is reduced.

5. All forms of conditionals are unified, from ad hoc if-
statements to pattern matching and polymorphic predi-
cate dispatch.

6. A declarative language of predicates ties together the
notions of types, assertions and conditionals.

Schematic tables have been developed within the Subtext
project [10], whose goal is to make programming easier by
altering the representation of programs. However they may

be applicable apart from Subtext, as a specification language
or code generator that goes deeper into implementation de-
tails than decision tables and tabular specification languages.
They may also be useful as a visualization of conventional
code within an IDE that maps table changes into code refac-
torings and transformations. Such applications are left for
future work. This paper will instead present schematic ta-
bles in their fullest form, as part of the Subtext language, but
will only discuss Subtext in so far as is necessary.

Schematic tables have not yet been implemented, and
some details of their design are unsettled. The diagrams in
this paper are “paper prototypes” from the user interface de-
sign of Subtext 2. They have been placed at the end of the
paper so that they can be torn off and followed separately (or
viewed in a separate window). A video demo of the imple-
mentation will be made available at http://subtextual.
org/subtext2.html. Color is an important visual aid in
the user interface — a full color version of this paper can
be found at http://subtextual.org/OOPSLA07.pdf.
Schematic tables will be presented in stages, starting at the
level of decision tables, then adding in turn the capabilities
of functional programming and polymorphism. The presen-
tation will focus on the improvements to the programming
experience.

2. Simple Schematic Tables
The process of constructing instruction tables should
be very fascinating. There need be no real danger of
it ever becoming a drudge, for any processes that are
quite mechanical may be turned over to the machine
itself.
– Turing [40]

We start by introducing a simplified form of schematic table
comparable in power to decision tables, but with advanced
IDE support that keeps tables in a canonical form free of
logical errors. The programmer is freed from doing Boolean
algebra. Figure 2 shows some Java code and the correspond-
ing schematic table. The important features of this table are:

1. Each row of the table corresponds to a variable in the
program, which is defined in the first column in blue.
Each column of the table states what to do in a certain
situation.

2. The second column corresponds to the Java conditional
if (a & b) x = 1;. The cells for a and b contain gray
boxes labeled y which are called predicates. Predicates
represent a test applied to their row’s value. The y pred-
icate tests whether a Boolean variable is true, n tests for
false, and a blank cell doesn’t care. The second column is
true when all its predicates are true, in other words when
both a and b are true.

3. The cell for x in the second column contains the number
1, which is called a value. When a column is true, the

values in the column are assigned to their row’s variables,
which in this case sets x=1.

4. The third column corresponds to the Java conditional
if (!a | !b) x = 2;. To express this disjunction a verti-
cal dotted line divides the predicates within the column
into subcolumns. The entire column is considered to be
true whenever it contains a subcolumn in which all the
predicates are true. The left subcolumn contains only the
predicate n on the variable b, which tests that it is false.
The right subcolumn contains the predicate n on the vari-
able a, testing that it is false. Thus the column is true
when either a or b is false, in which case x is assigned
2. Note that values belong to the entire column, not sub-
columns.

5. The division of columns into subcolumns is known in
logic as disjunctive normal form. Every predicate has a
complementary form that is its negation (e.g. y and n).
The possibly negated predicates within each subcolumn
are conjoined (logical AND) and then all of the sub-
columns are disjoined together (logical OR). The signif-
icance of disjunctive normal form is that it can represent
all possible logical propositions. A similar tabular repre-
sentation of queries is presented in Pane and Myers [31].

The benefit of the table is that it clearly reveals the condi-
tions under which x=2, whereas the Java code leaves it up to
us to work out the logic of the else block using deMorgan’s
law: ¬(a∧b) = (¬a∨¬b). That may not be an undue burden
in this trivial example, but as we will see even slightly more
complex conditionals can quickly lead to bewilderment.

Unfortunately truth tables do not absolve us of doing
mental Boolean algebra. They merely shift the burden onto
the construction and maintenance of the table, which can re-
quire just as much effort, and be as error-prone. As men-
tioned previously, it is quite easy to build tables that have
gaps or inconsistencies in their logic. The same problem
arises in the Java code of Figure 3, which is a transliteration
of the table. The conditions for each case are made explicit,
but with the maintenance burden of ensuring that exactly one
of the if statements executes in all cases. It seems that we
are faced with a dilemma: having to do mental Boolean al-
gebra either when we read our code or when we change it.
Schematic tables circumvent this dilemma by doing the cal-
culations automatically while editing within an IDE. After
all, it is absurd to be doing Boolean algebra in our head when
there is a computer sitting right in front of us.

2.1 Logical editing
It has long been realized that decision tables can be automat-
ically validated [21, 33], and some contemporary products
[25, 37] do so interactively, immediately revealing errors.
Schematic tables instead provide high-level editing opera-
tions that keep the table free of gaps and overlaps at all times.
Errors are essentially automatically fixed, although the pro-

grammer may need to make subsequent adjustments to home
in on a desired result. As an example, we will show how the
table in Figure 2 could have been created.

1. We will start with the table in Figure 4(a), which uncon-
ditionally assigns x=2. We need to add logic to assign
x=1 when a and b are true. A new column is introduced
via a menu operation, resulting in 4(b).

2. Next we put y predicates into the cells for a and b in
the column with a right-click menu that suggests possible
predicates2, resulting in 4(c).

3. The value to be assigned to x is edited into the proper cell
in 4(c). Assigning x creates an overlap conflict with the
existing assignment, which is automatically resolved by
creating a new column restricted to the complement of
the conflicting one, as shown in 4(d).

The IDE calculates deMorgan’s law for us in order to
keep the table free of overlaps and gaps. The precise in-
variant is that all columns assigning the same variable must
be logically disjoint (no overlaps), and together must com-
pletely cover all possible cases (no gaps). These two prop-
erties combined are called partitioning.3 By automatically
maintaining partitioning, the programmer is freed of the
drudgery of Boolean algebra, whether they are reading or
writing code.

2.2 Transactional editing
Changing program logic often involves a series of coordi-
nated edits in different places. While making these edits we
may temporarily disrupt the program, requiring compensat-
ing edits elsewhere. Schematic tables support a transactional
editing mode that allows us to perform a series of edits while
visualizing their cumulative impact, deferring commitment
until we are satisfied.

For example, Figure 5 shows some Java code and its
corresponding table. Suppose that we discover a bug: the
cases when b and c are true should set x=3. We want to
preserve the existing behavior in all other cases. Further, we
want to make this change without copying the assignment
x=3, since that might cause undesirable code duplication.
Skeptical readers are invited to solve this mundane problem
before reading ahead.

1. Since we want to add new cases that assign x=3, we use a
mouse-menu operation to insert a new subcolumn in the
right-hand column, resulting in Figure 6(a). This edit is
being performed in the transactional mode that displays
the cumulative impact of a series of changes and allows
the programmer to either complete or cancel them. The
red box around the new subcolumn indicates that it is
a set of states being added into the column. Since the

2 The suggestions are based on the variable’s type, to be discussed in §3.
3 Observe that Dijsktra’s guarded commands [8] use overlapping to express
nondeterminacy, whereas schematic tables are disjoint and deterministic.

subcolumn contains no predicates, it is always true, and
thus conflicts with all other columns and subcolumns.
All of them are X-d out, indicating that they are states
currently marked to be subtracted by the transaction.

2. We continue by limiting the tentative new subcolumn to
the states of interest by inserting y predicates on b and c
as requested. The result is 6(b), which has divided up the
other two columns to show precisely which states now
need to be subtracted to keep the table partitioned. This
information may be important: it tells us, case by case,
what the impact of our changes will be on the old logic.

3. Clicking on the green arrow completes the transaction,
deleting the X’d out cases and leaving us with the final
solution in 6(c).

The solution in Java is shown in Figure 7, with the changes in
bold. The author’s informal sampling has found no one (in-
cluding himself) who could immediately get this right. The
schematic table makes the change straightforward, turning
over the mechanical calculation to the machine itself.

2.3 Canonicity
Schematic tables have an important property: they are canon-
ical. There is only one way to express each different mean-
ing4. The only control the programmer has over the table’s
layout is the order in which the variables are defined in the
left hand column (and similar orderings, such as the order
of enumeration constants). These orderings are extended to
columns in a modified lexicographical manner, the details of
which will be omitted. The important fact is that the pred-
icates within columns are reduced to Blake canonical form
[1, 4], which guarantees that the subcolumns represent all
of the simplest possible examples of the cases being se-
lected. These examples are called prime implicants [35] in
logic, and help to make schematic tables example centric [9].
Canonicity will be preserved as we enrich schematic tables
throughout the rest of the paper.

3. Functional Schematic Tables
In spite of progress in restricting and simplifying the
structures of software, they remain inherently unvisu-
alizable, and thus do not permit the mind to use some
of its most powerful conceptual tools. This lack not
only impedes the process of design within one mind, it
severely hinders communication among minds.
– Fred Brooks [3]

This section addresses the fundamental limitation of de-
cision tables: that they can not represent arbitrary computa-
tions, only logic. Here schematic tables are turned into full-
fledged functions that are callable, and in turn call other ta-
bles, and even recurse upon themselves. The basic idea is

4 “Different meaning” is non-equivalence in the decidable logic of predi-
cates discussed in §7.

to represent expressions as trees of function calls, laid out
vertically across rows of the table, with one function call
per row. Useful new views of code are enabled. The stan-
dard notions of types and assertions are also introduced, but
with the twist that they share the same declarative language
of predicates with conditionals, leading to some convenient
interactions among what are normally only loosely coupled
language features.

We will restrict ourselves to the simple case of functions
that have expressions inside conditionals, but not the other
way around. The general case will be handled in the next
section. Figure 8 shows the Fibonacci function implemented
in Java and Figure 9 is the equivalent schematic table. The
important features demonstrated by this table can be sum-
marized as follows:

1. Function arguments are represented as input variables of
the table, suffixed by a colon, and function results are
represented as output variables, suffixed with an equals
sign. All functions use the standard input variable in.
Binary operators use a second input with. All functions
use the standard output variable out. The value assigned
by the table to out is the return value of the function.

2. Predicates are generalized to test for type membership
(∈) and arithmetic inequalities (<, �, 6=, etc.). Predicates
lacking a relation symbol are equality tests. The implicit
left-hand argument of a predicate is the variable defined
in its row.

3. Predicates are applied to variables in the first column to
represent classical types, with compile-time5 type check-
ing.

4. Predicates can be used as assertions, which are run-time
tests that throw an exception if they are false (but only if
they are in a true column). Assertions do not affect the
truth conditions of their containing column. Assertions
are displayed as an octagonal box and turn red if violated
(like a stop sign).

5. Expressions containing nested function calls are repre-
sented as inverted trees of boxes. Each box is a function
call, and is on its own row of the table. The last column
of the table assigns out from the function tree equivalent
to the expression fibonacci(in - 1) + fibonacci(in
- 2) whenever the input is ≥ 2.

6. Vertical lines are used to connect function calls within an
expression. Inputs enter the function box from the top,
and outputs leave it from the bottom. The positions of
these lines are shown in the key in Figure 10.

5 There is no difference between compile-time and run-time in Sub-
text, since all code is always running. To preserve familiar terminology,
“compile-time” will be taken to mean a static analysis that ignores the ac-
tual values of variables and hence applies to all possible executions, whereas
“run-time” properties are specific to a single execution instance.

7. The main input and output lines of a function are aligned,
and so composing functions through their first argument,
as in f(g(h(. . .))) leads to a vertically aligned stack of
boxes. Secondary inputs indent their function stacks and
place them under the stacks of left-ward arguments.

8. Function arguments that are variables or constants are
named inside the box at the same position as a line
would enter. Function trees are actually graphs; the de-
vices used to represent cross-cutting edges are discussed
elsewhere [10], but will not be used in this paper.

9. Editing of function trees can be performed with a number
of mouse and keyboard operations [10], the most impor-
tant of which is the splice operation. A function box can
be dragged off of a palette, or out of existing code, and
then dropped onto one of the vertical lines of the tree. The
function will be spliced into the tree at that point, cutting
the line and connecting the two ends into the function
along its primary input/output axis. Connections between
functions can also be altered by dragging lines around,
changing the shape of the tree.

10. The function tree layout algorithm is canonical, driven
by input argument order and the connections between
function inputs and outputs. The programmer controls
only those connections. There is no manual placement
and adjustment as with many visual programming lan-
guages [5, 29]. Neither is there fussing with carriage re-
turns and tabs to beautify textual layout.

Function trees offer some advantages over traditional par-
enthetically nested expressions. They can be read linearly,
following the visual cues of the lines, either up or down.
Nested expressions can quickly becomes disorienting: after
all, we are not stack machines. The vertical layout across
rows enables some new ways to visualize execution and
browse code, described below.

3.1 Live code
Schematic tables help not only to visualize the logic of code,
but also its actual execution. Since every variable and func-
tion call has its own row of the table, execution values can
be annotated into the rows, as shown in Figure 11 for an
input value of 2. The values of every variable and the pri-
mary output of every function call are shown prefixed with
an equals sign. True predicates are colored green, false pred-
icates gray. False columns are shaded entirely gray, showing
that their contents are inactive, and in contrast highlighting
the true columns.

In Subtext all code is always a running instance, so dis-
playing these execution values merely reveals what has been
kept hidden until now. But the same presentation could be
used to illuminate code within a conventional debugger, by
selecting a stack frame of the function. Unlike traditional
break-and-step debugging, the entire execution of the func-
tion is made visible at once. Function trees offer a conve-

nient place to annotate complete traces of execution values
within the code itself. A previous paper [9] discussed an im-
plementation technique for Java and the implications for the
development process.

3.2 Laminar browsing
Since function calls are arrayed in the vertical dimension, the
horizontal dimension can be used to zoom in on them non-
disruptively, with a technique called laminar browsing. Fig-
ure 12 shows how any function call can be expanded right-
ward to see its internals. This example shows drilling into
the recursive structure of fibonacci to explore a particular ex-
ecution, but it could equally well be used to browse between
different functions and definitions during editing. Structured
values can also be expanded in the same way.

Multiple expansions are stacked up in columns of the
browser window called layers. Vertical scrolling is “geared”
between the layers, with rightward layers scrolling faster
than leftward ones in order to keep related information syn-
chronized on screen. Expanding from the right-most layer
opens a new one to the right, and scrolls the entire display
leftward. Backtracking is done by scrolling the entire display
rightward to see the contextually leftward layers. This ap-
proach maps out a tree of traversals, unlike the strictly linear
back/forward history of browsers. It also shows the context
of where you came from and where you are going, unlike
browsing by opening independent windows.

3.3 Types, assertions, and conditionals
Predicates foster a convenient interplay between types, as-
sertions, and conditionals, which are only loosely related in
conventional languages. Because assertions and conditionals
use the same language of predicates as types, they have
meaning at compile-time. Predicates satisfy types within
their column, as if they were implicit local downcasts. One
can impose specifications on a function by publishing ar-
bitrary predicates as types, obligating the callers to satisfy
them with assertions or conditional guards (the aforemen-
tioned downcasts generalized to arbitrary properties). As-
sertions of arbitrary predicates flow out of a function at
compile-time, like return types, to latch conditionals or sat-
isfy types, even though they are run-time checks. Assertions
may occur in other columns than the first, conditionalized by
the predicates of that column to form logical clauses6. Over-
all, the ubiquitous use of predicates enables programs to be
more declarative.

6 If such clausal assertions could be incorporated into reasoning within the
function’s callers then we start to get the features of a formal specification
language. Future research will explore this direction.

4. From Java to the Outer Limits
We will control the horizontal.
We will control the vertical.
– The Control Voice7

In this section a larger example introduces the full ca-
pabilities of schematic tables. Tables will be generalized to
support multiple independent conditional tests, and these
tests can select the inputs to functions. The central idea is
that computation is represented in the vertical dimension of
the table, while decision-making is in the horizontal dimen-
sion. Orthogonalizing these two concerns allows their differ-
ent semantics to be manifested directly in the geometry and
behavior of the table. Maintaining logical partitioning of the
table drives high-level transformations that save labor. The
extra degree of freedom offered over textual syntax reduces
the need to split code across control structures.

Figure 13 shows the Java implementation of a function
that calculates the damage of an attack in a video game,
known as hit points. Attacks are categorized by the Attack
enum into MELEE and MAGICAL, which draw upon different
attributes of the attacking character: its strength or magic.
A random number modulates the effectiveness of the attack,
unless the attacker possesses the magical Amulet of Puis-
sance, which bestows 80% effectiveness. The damage to the
target depends on the type of the attack. A magical attack
is damaging in inverse proportion to the target’s magical
power, while a melee attack is damaging only to the extent
that it overpowers the target’s armor. To simplify matters, all
numeric values are assumed to be normalized to the interval
[0 – 1].

Unfortunately, as so often happens, the requirements do
not cleanly factor out into a simple switch on the type of the
attack, leading to a design dilemma. There is shared logic
between the cases. Copying the shared logic across different
cases would be undesirable duplication. Yet abstracting it
into a separate function is of questionable benefit because it
is so intertwined with the rest of the code. Using two switch
statements to centralize the shared logic, the choice taken
here, is redundant and splits apart related code. The point is
not to debate this dilemma which Java thrusts upon us, but
rather to show how schematic tables can avoid the need to
make such difficult trade-offs.

Figure 14 shows the same function as a schematic table,
illuminated by a live example execution. The important fea-
tures of this table are:

1. More than one column can be true at a time, allowing in-
dependent conditions to be tested without a combinato-
rial explosion of cases. The graying-out of false columns
in the live example highlights by contrast the three true
columns, plus the first column (which is only false when
there is a type error).

7 http://en.wikipedia.org/wiki/Outer_Limits

2. Function inputs can involve choices, indicated by split-
ting the vertical connector line across multiple columns,
connected by a horizontal line. For example the first in-
put to the ‘∗’ function in the first column is a choice be-
tween .8 and a call to random, based on the value of the
attacker.amulet field.

3. The partitioning invariant is generalized to require that
there be exactly one true column among all the choices
for a variable or function input. The question mark in the
bottom row adds a “sub-partitioning” constraint, which is
explained in §4.5.

4. Function inputs and outputs can be named like local
variables, as in power and effectiveness. However these
names are optional and for documentation purposes
only — they are not required like in textual languages
as a form of exposed plumbing. In the Java code, we
wouldn’t have thought twice about collapsing power and
effectiveness into a nested expression if the switch
statement hadn’t forced us to split out the code.

5. Predicates can test the result of internal computations,
shown by the <0 and ≥0 predicates evaluating the result
of the subtraction to their left. Note that the ≥0 predicate
allows the value it is testing to flow through to the output
without having had to assign it first to a local variable.

Columns unite code that is used under the same condi-
tions, whereas textual conditionals often force it to be split
apart. The dilemma of Figure 13 is resolved: the code that
was split across the two switch statements is now unified
vertically within columns, while the shared logic in the left-
ward columns is jointly accessed horizontally. Another com-
mon annoyance is having to save a Boolean in a “flag” vari-
able which is then repeatedly tested by conditionals scattered
throughout the code. A schematic table would unite the bod-
ies of those conditionals in a single column making a single
test. We will see in §5 how columns can also unite code split
across polymorphic methods. The more flexible connectivity
within a schematic table is because it has two dimensions,
whereas text has only one (or perhaps 1.5, counting indenta-
tion).

4.1 Controlling the horizontal
The table is still canonical. The programmer can not “place”
function calls in cells. Vertical placement is determined by
the tree layout algorithm described earlier. Horizontal place-
ment is determined by a relevancy analysis.

The downstream consumers of the call’s outputs are tra-
versed to determine the union of all cases in which they are
used; the call is then placed in a column predicating the com-
puted relevancy conditions. The leftmost ‘*’ call is used in
all cases, so it is placed in the first column. The other ‘*’
call is placed in the last column because it is only used for
magical attacks. The relevancy analysis frees the program-
mer from having to conditionalize function calls based on

when they will be needed, as in a lazy language. But unlike
lazy languages, the inferred predicates make it clear exactly
what those conditions are, which may be important to know.
They act like explicit conditionals, including satisfying input
types of the called function.

As mentioned earlier, the horizontal ordering of columns
is also canonical. An important property of this ordering is
that it is a topological sort of the implication ordering. For
example, the column which conjoins the predicates melee
and <0 implies the column with just melee: columns that are
true in a set of cases are implied by those that are only true in
a subset of those case. Therefore the melee-only column is
placed to the left of the more restrictive ones. The “truthiest”
column is always the left-most one containing the types
defining all possible cases. Self-contradictory columns will
appear on the right-hand side (and be shaded extra-darkly).
This ordering property means that the geometry of the table
tells us something about its logic.

4.2 The central idea
The central idea of schematic tables is that function trees
show computation vertically, while truth tables show logic
horizontally. Computation and decision-making are thus rep-
resented orthogonally. The geometry and behavior of the
table manifests the different semantics of these two di-
mensions: computation that of data flow graphs; decision-
making that of Boolean algebra. Separating these two as-
pects of a program makes it easier to understand, and easier
to change. Having two independent dimensions offers an ex-
tra degree of freedom over linear text, reducing the need to
split apart related code.

4.3 Restriction
Schematic tables can be restricted into a partial view that
assumes certain predicates are true. Figure 15 shows the re-
striction on magical attacks (and with live execution values
turned off). The restriction predicate is displayed in yellow.
All columns that are contradicted by the restriction assump-
tions are hidden. All predicates that are implied by the re-
striction assumptions are also hidden. Note that a restriction
is a fully editable view of the schematic table.

4.4 Pattern matching
The way that schematic tables divide the code into cases
which are guarded by predicates is somewhat like pattern
matching [6] in functional languages. The declarative nature
of patterns allows completeness to be enforced at compile-
time. However pattern matching has some limitations:

1. Pattern matching enforces completeness, but not disjoint-
ness — overlapping patterns are allowed, with the “first
fit”8 being executed. First fit is like doing “implicit else”
with a return or break statement. It encodes logic tacitly

8 Hope [6], which first introduced pattern matching, used a “best fit” seman-
tics that arguably overcomes this objection. This feature was discarded in

in order, making it terser but harder to understand, and
harder to preserve under change.

2. Pattern cases are laid out vertically in the source file,
while schematic tables do so horizontally, orthogonal to
the code. Lining up all the predicates on the same variable
in a row makes the differences between patterns more vis-
ible, as in truth tables. Note how the attacker.amulet field
is “destructured” into a box occupying its own rows of
the table, lining up all the predicates on it. Destructuring
variable assignments could be likewise represented.

3. The hitPoints example would require two separate pattern
matches, just as it requires two switch statements in Java:
shared code between the cases causes the data flow to
wind out and back in to each case. This flow is easily
represented in the two dimensions of a schematic table.

4.5 Code transformation
Maintenance of the partitioning invariant on tables drives
high-level transformations that save programmer labor and
thought. We saw this in §2 for simple decision tables; we will
demonstrate it now for general code editing. For example
suppose that we introduce new weapons technology into
the game: ranged weapons that can attack from a distance.
We want the hit point calculation for ranged weapons to
be the same as for melee attacks, except that a new ability,
acuity, will modulate its effectiveness. We adjust the code in
a sequence of simple steps:

1. Appending ranged to the Attack enumeration automati-
cally changes the table as in Figure 169. A new column
has been added to keep the table complete, but using an
exclamation mark as the value of the assignment. The ex-
clamation mark is a special error value that indicates a
missing value requiring resolution by the programmer. It
is highlighted in red, and also has the effect of violating
the Rational type on out, which likewise flares up red.
We can resolve this problem by replacing the exclama-
tion mark with the appropriate code for the new case. A
pattern matching language would have reported the miss-
ing case as a compiler error. The schematic table goes
further by also generating the boilerplate for fixing it.

2. To share the logic of melee attacks with ranged ones
in Java, we would add RANGED onto the case selectors
for MELEE in both of the switch statements. We do the
same thing in the schematic table by dragging the ques-
tion mark onto the exclamation mark. The question mark
serves here as a group handle on the pair of values imme-

subsequent functional languages, although it has been revived in a recent
proposal [26].
9 Note that the two subtraction functions have been placed on the same row.
This is an abbreviation to save vertical space by reusing a row for multiple
functions when it is known that they are in contradictory columns. This
abbreviation is a user-configurable parameter.

diately to its right, which together cover the melee case.10

The drag action merges the conditions of the target col-
umn (ranged) with the actions of the source columns
(melee), resulting in Figure 17. The target.armor logic
that before was in the melee columns is now predicated
on being melee or ranged (using a comma to abbreviate
the disjunction). But the choice of attacker.strength for
melee attacks was moved into a new column to the right,
because it applies in more restricted conditions, in accor-
dance with the canonical ordering of the table.

3. The previous change triggered a new incompleteness
error. The choice between attacker.strength and at-
tacker.magic does not cover ranged attacks, so an ex-
clamation mark is again automatically introduced to fill
the gap. A type error is triggered on the * function on the
left, which turns red.

4. We fix this error by replacing the exclamation mark with
the desired reference to attacker.acuity, producing the
final result in Figure 18.

Introducing the new enumeration constant ranged led us
by the hand in writing the code to deal with it, step by
step, driven by maintenance of the partitioning invariant of
schematic tables.

5. Duck Polymorphism
Object oriented languages offer subtype polymorphism as a
powerful form of conditional. Polymorphic dispatch decides
which method to choose based on class — in other words
conditionalizing on class. The power of polymorphism is
that it makes class-based conditionality declarative. One can
infer things about method dispatch at compile time, which
IDE’s use to great advantage. Polymorphism imposes struc-
ture on the code that helps identify the role of methods just
by their containing class. Schematic tables, as already de-
scribed, support all the essential features of polymorphism,
albeit in an unconventional manner. The argument is that
schematic tables walk like polymorphism, and quack like
polymorphism, and hence provide “duck polymorphism”.
There are two essential features of polymorphism11:

1. Dividing code into methods that are specialized by their
containing class and the types of their arguments.

2. Overriding of methods via dynamic dispatch.

10 The question mark establishes a “sub-partitioning” constraint among
columns. A question mark is like an “abstract value”, in the sense of an
abstract method, laying down a marker that obliges the value to be assigned
in all columns which logically restrict that column, and which together must
cover all cases of that column. This constraint is analogous to the way that
an abstract method must be overridden in all non-abstract subclasses.
11 This section will actually show how schematic tables emulate the features
of generic functions [28], while using the more familiar terminology of
methods as if there were no difference. The difference is primarily one
of syntactic packaging: there are well known ways to turn functions into
methods, as for example in Python.

The basic idea is, firstly, that restrictions on schematic ta-
bles offer specialized views similar to methods, but without
physically dividing up the code. Secondly, that table parti-
tioning induces overriding logic between columns that im-
ply each other, without having to invoke hidden run-time
machinery. Duck polymorphism offers some advantages.
“Methods” can share code, reducing their fragmentation.
Method dispatch is revealed as explicit logic in the table.
Inherited behavior and possible dynamic overridings are
clearly visualized. The declarative power of polymorphism
is made flexible enough to replace ad hoc if-statements.

5.1 Restriction replaces method division
Figure 19 replaces the switch statements in hitPoints with
polymorphism in the standard manner. The Attack enum is
converted to a class with subclasses Melee and Magical.
Seven methods are produced. The arrows show the cross-
class transfers of control for a call to Melee.hitPoints.
Remember that classes are typically defined in separate files,
so even in modern IDE’s the programmer will not see them
together as in Figure 19. Comprehending how all the little
fragmentary methods tie together when one doesn’t actually
see them together is a central difficulty of polymorphism.

Schematic tables don’t need to be divided into little spe-
cialized methods. Instead, we can use restriction to view
specialized aspects of the table that correspond to methods.
Figure 20 shows the trivial conversion of the table, replac-
ing equality by instance membership. Figure 21 shows lam-
inar browsing from a table that calls the hit points function
within a column contingent on Magical attacks. The call is
expanded to the right, automatically restricted on the predi-
cates of the calling context. The restriction shows us just the
parts of the table relevant to Magical attacks, like the method
which would be dispatched in this situation.

Restrictions act like methods in the sense that they show a
class-specialized fragment of the code. They are specialized
declaratively like methods with predicates, allowing static
analysis, partitioning constraints, and IDE assists. Restric-
tions are independently editable, just as if they were phys-
ically distinct methods. But restrictions have an advantage
over methods: they can share code without extracting it into
another method, reducing method fragmentation.

The table contains two “methods”: the columns predi-
cated on ∈Melee and ∈Magical respectively. There is no
need to extract the shared logic about amulets and ran-
domness into the Java effectiveness method. That code
shows up in both method restrictions, flagged as being
shared because it is located in columns to the left of the yel-
low restriction column. Edits to such shared code are visible
in all sharing restrictions, just as editing an extracted method
would be. We don’t need to extract the power method ei-
ther, which was done solely to allow it to be called from
effectiveness. Now the code that had to be split across
hitPoints and power sits in the same column. Polymor-
phic restriction provides more coherent class-specialization

of code than methods do, because it is orthogonal to data
flows.

5.2 Implication partitioning replaces dynamic dispatch
Dynamic dispatch is the other essential aspect of polymor-
phism. It allows us to incrementally add code specialized
for certain subclasses and have it be invoked when needed.
Predicate dispatch [12, 27] provided the key insight that
method dispatch is driven by logical implication. A subclass
method overrides a superclass method because an object be-
ing in the subclass implies it is also in the superclass. Predi-
cate dispatch adds a decidable logic of predicates that allow
dispatching on conditions other than class membership, with
the rule that implicants override. Predicate dispatch also in-
tegrates overloading, by including predicates on arguments
in the implication. This logical interpretation of polymor-
phism fits right into schematic tables.

As an example, we will add the ranged attack from §4.5
polymorphically. Since it differed from melee attacks only
in the acuity parameter, it would be simplest to add Ranged
as a subclass of Melee. But ranged attacks are not concep-
tually instances of melee attacks, so the proper thing to do is
to introduce a new abstract class Physical which has sub-
classes Melee and Ranged. Figure 22 shows the resulting
Java code. We have decided that the default for physical at-
tacks should be to rely on the attacker’s strength, and only
override this in the case of ranged attacks. The same change
is easily made to the schematic table. Too easily — instead
we will make Physical non-abstract to expose more gen-
eral dispatch logic. The steps are as follows:

1. Figure 23 shows the effects of altering the class hierar-
chy. Completeness induces a column showing there is a
gap in the logic for non-Melee Physical attacks, indicated
as before with the exclamation mark error value. This er-
ror would be reported in Java as the failure to override the
abstract method Attack.hitPoints in Physical. The
table error identifies precisely what cases are missing, not
just their superclass. It also provides the boilerplate for a
fix, in the same way as was seen earlier with enumera-
tions.

2. As was done in Java, the existing Melee logic needs
to be promoted up to the Physical class. This is done
by dragging the ∈Melee predicate and dropping it in
the error column. The cases of the columns are merged
(overwriting the conflicting exclamation mark), produc-
ing Figure 24, which differs from the starting point only
in that the ∈Melee predicate has turned into ∈Physical.
The equivalent change in Java would typically be done
by renaming the Melee class to Physical.

3. Next the overriding behavior for Ranged attacks must be
added, as in the Java method Ranged.power. Overriding
is introduced by editing within a restriction. Figure 25
shows the restriction on Ranged. There is no code spe-

cific to ranged attacks yet, so the restriction column is
empty. Note that the “inherited” behavior is shown in the
columns to the left, predicated by source class (in this
case Physical). The value of attacker.strength is over-
ridden within the restriction by directly editing the proper
cell in the asserted column, as shown by the text field in
Figure 25. This edit will cause attacker.strength to dis-
appear from the restricted view, as it has been overridden.

4. To see the big picture, Figure 26 lifts the restriction up
to the superclass Physical. There is a column on the
right hand side predicated on Ranged containing the
overriding value just entered. The value it overrides, at-
tacker.strength, is in the column to its left, predicated on
being Physical but not Ranged. These predicates reveal
precisely the dispatch logic of the power method in Java:
the Physical.power method will be overridden only by
Ranged.power. This logic is shown in a pleasingly sym-
metric form using the negative predicate /∈. The method
dispatch algorithm has essentially been compiled into
the predicates, induced by the partitioning invariant on
columns that specialize (imply) others.

The schematic table interpretation of polymorphism has
some limitations compared to languages designed expressly
for the purpose. For example, there is currently no mecha-
nism equivalent to Java’s super. But schematic tables also
offer some benefits. The specialization of code into meth-
ods is achieved more flexibly by restricted views, permit-
ting code sharing without method fragmentation. The logic
of method dispatch is revealed explicitly, and induced by the
partitioning constraint on tables. Overriding is introduced by
editing within a restriction. Restrictions offer a view from
one point in the class hierarchy of both inherited and over-
riding code. The power of predicate dispatch is provided, but
given an extra degree of freedom so that it can apply to ad
hoc internal logic, not just at method calls.

6. Untangling time and logic
Up until now we have ignored a crucial issue: execution or-
der. The conventional approach is to delicately intertwine
actions into the control-flow of conditionals. Schematic ta-
bles allows us to untangle time and logic, representing them
orthogonally.

The Subtext approach to time and state has been dis-
cussed in detail elsewhere [11]. A brief sketch will be made
of how time can be represented in schematic tables in a way
compatible with either a conventional semantics or that of
Subtext. The basic idea is to represent execution order as an
explicit data flow. All operations with side-effects are repre-
sented as functions called actions that transform states. By
convention they take an input state on their primary input ar-
gument and produce an output state on their primary output.

These states can be seen as symbolizing points in time12.
Actions are ordered by being stacked up along their pri-
mary axis. All state-inspecting operations, like pointer deref-
erences, are considered to inspect the input state of their con-
taining function, or equivalently, that they all happen before
any internal actions are executed.

Figure 27 shows an example of a simple Java method
that executes some other methods which are presumed to
have side-effects and interdependencies. The equivalent
schematic table is shown to the right13. The columns can
be imagined as “highway lanes”, with time driving down-
ward, and predicates causing lane switches. Note that this
is not some special mode, but the same representation of
functions that we have been using all along.

By representing time and logic orthogonally, they can
be seen as separate aspects, and changed independently.
Altering the conditions gating an action while preserving
its relative execution order can be achieved by dragging it
horizontally in the table. Conversely, altering the execution
order of an action while preserving its gating conditions can
be achieved by dragging it vertically in the table.

For example, suppose that we want to execute I in all
cases but without changing its execution order relative to
the other actions. Modifying the Java code requires some
care. Figure 28(a) shows the necessary changes in bold,
with deletions struck through. The equivalent change to the
schematic table is performed in 28(b) by dragging the action
I horizontally over to the first column, which is the condition
in which we want to execute it, while keeping its vertical
position unchanged, to preserve execution order. The red
line is a popup drop guide. Figure 28(c) shows that the
required cuts and splices have been automatically performed
to achieve the desired result.

7. Decidability
The power of schematic tables is that they make conditionals
declarative, providing the knowledge at compile-time and
edit-time that informs all of the advanced features described
in this paper. But the use of predicates like ≥0 may seem
concerning — type systems carefully avoid such properties
because they are in general undecidable. Luckily schematic
tables are in a simpler situation than type systems, which
must reason about the effects of arbitrary computations.
Schematic tables need only reason about the partitioning
properties of predicates on sets of fixed values. Such reason-
ing is essentially propositional, and decidable.

Formally, partitioning requires only formulas of the form
∀x1, . . . , xn.F where F is a quantifier-free formula of first-

12 This is similar to the approach taken by monads [20, 42], though without
the higher-order cleverness used to accomplish it within an expression
language. On the other hand, Subtext treats states as virtual versions of the
entire global state.
13 Flow graphs [19] use similar diagrams (though with a conventional treat-
ment of conditionals) in a categorical semantics of imperative computation.

order logic with equality and constants as the only function
symbols. The type-membership predicate ∈ is axiomatized
by encoding the subtype hierarchy into partitionings. The
partitioning properties of integer comparison can be axiom-
atized using formulas of the same form, such as

∀x ∈ Int. ∀y ∈ Int. (x > y) ⇔ ¬(x ≤ y)
and a finite number of instances of schemata like

∀x ∈ Int. (x ≥ pnq) ⇔ (x = pnq) ∨ (x ≥ pn + 1q)
sufficient to cover the integer literals in use. These formu-
las belong to a decidable fragment of first order logic, the
Bernays-Schönfinkel-Ramsey class [2], whose satisfiability
can be checked in NP. There are known decision proce-
dures [17, 23] for similar problems. Subtext will employ a
SAT-solver [7] as a flexible testbed for the logic of predi-
cates.

8. Conclusion: Representation Matters
In symbols one observes an advantage in discovery
which is greatest when they express the exact nature
of a thing briefly and, as it were, picture it; then indeed
the labor of thought is wonderfully diminished.
– Leibniz

The conclusion offered by schematic tables is that represen-
tation matters. Their flexibility comes from the extra degree
of freedom offered by a two-dimensional notation. Their
power comes from directly manifesting Boolean algebra in
their geometry and behavior. It is a truism in all technical
fields that the key to solving a problem is choosing the right
notation. The hallmark of a good notation is that it mirrors
its domain: that equivalent situations get represented equiv-
alently, and that different representations refer to different
situations: in other words, canonicity.

The need to manually refactor — having to laboriously
make literally meaningless changes before being able to ex-
press a solution — is a textbook symptom of poor notation.
Another warning sign is the need for difficult mental cal-
culation to understand and manipulate the notation. Enor-
mous effort and creativity has been invested into IDE’s like
Eclipse, yet in the end there is something gravely unhealthy
about a notation that requires such a complex life-support
system.

Schematic tables raise obvious concerns. Will they scale
to large programs? Will the variety of editing operations
be too complex? Will canonicity cause disturbing volatil-
ity as we edit? These are all serious matters of user inter-
face (UI) research. There is some reason for optimism, how-
ever. Textual languages are anchored to a grammar, limiting
IDE’s to being enhanced text editors. Schematic tables, as a
computer-mediated representation, make no commitment to
a fixed encoding. They are not viable outside of an IDE, but
they leave the door wide open for clever UI innovation.

The significance of schematic tables may not rest upon
whether or not they are the one true way to represent con-

ditionals. It may rather be as witness that there exist inter-
esting new ways to represent programs outside of the well-
explored space of grammars. The history of programming
languages is not over.

Acknowledgments
Daniel Jackson, Derek Rayside, Rob Seater, Emina Torlak,
and Viktor Kuncak provided helpful discussions, and the
Software Design Group at MIT provided a creative environ-
ment. Constructive criticism was offered by Jacques Carette,
Matt Hellige, Macneil Shonle, and the anonymous referees.
Ethan Edwards helped formulate the examples.

References
[1] A. Blake. Canonical expressions in Boolean algebra.

PhD thesis, University of Chicago, 1938.

[2] E. Börger, Y. Gurevich, and E. Grädel. The classical
decision problem. Springer, 2001.

[3] F. Brooks. No Silver Bullet: Essence and Accidents of
Software Engineering. Computer, 20(4):10–19, 1987.

[4] F. Brown. Boolean Reasoning. Kluwer Academic
Publishers Boston, 1990.

[5] M. Burnett and A. Goldberg. Visual object-oriented
programming. Manning, 1995.

[6] R. Burstall, D. MacQueen, and D. Sannella. HOPE:
An experimental applicative language. Proceedings
of the 1980 ACM conference on LISP and functional
programming, pages 136–143, 1980.

[7] M. Davis, G. Logemann, and D. Loveland. A machine
program for theorem-proving. Commun. ACM, 5(7):
394–397, 1962.

[8] E. W. Dijkstra. Guarded commands, nondeterminacy
and formal derivation of programs. Commun. ACM, 18
(8):453–457, 1975.

[9] J. Edwards. Example centric programming. SIGPLAN
Not. (OOPSLA ’04 Onward! Proceedings), 39(12):84–
91, 2004. ISSN 0362-1340.

[10] J. Edwards. Subtext: Uncovering the simplicity of pro-
gramming. In OOPSLA ’05: Proceedings of the 20th
annual ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications,
pages 505–518. ACM Press, 2005.

[11] J. Edwards. First Class Copy & Paste. Technical report,
Massachusetts Institute of Technology Computer Sci-
ence and Artificial Intelligence Laboratory, May 2006.
URL http://hdl.handle.net/1721.1/32980.

[12] M. Ernst, C. Kaplan, and C. Chambers. Predicate
Dispatching: A Unified Theory of Dispatch. ECOOP,
98:12th, 1998.

[13] D. L. Fisher. Data, documentation, and decision tables.
Commun. ACM, 9(1):26–31, 1966.

[14] T. Green and M. Petre. When Visual Programs are
Harder to Read than Textual Programs. Human-
Computer Interaction, 1992.

[15] R. Halverson Jr. An Empirical Investigation Comparing
IF-THEN Rules and Decision Tables for Rrogramming
Rule-based Expert Systems. System Sciences, 1993,
Proceeding of the Twenty-Sixth Hawaii International
Conference on, 3, 1993.

[16] C. Heitmeyer, M. Archer, R. Bharadwaj, and R. Jef-
fords. Tools for constructing requirements specifica-
tions: The SCR toolset at the age of ten. International
Journal of Computer Systems Science and Engineering,
20(1):19–35, 2005.

[17] M. Ibramsha and V. Rajaraman. Detection of logical
errors in decision table programs. Commun. ACM, 21
(12):1016–1025, 1978.

[18] R. Janicki, D. L. Parnas, and J. Zucker. Tabular repre-
sentations in relational rocuments. In Relational meth-
ods in computer science, pages 184–196. Springer-
Verlag, 1997.

[19] A. Jeffrey. Premonoidal categories and a graphi-
cal view of programs. Technical Report 98-004,
CTI, DePaul University, August 1998. URL
http://facweb.cs.depaul.edu/research/
techreports/abstract98004.htm.

[20] S. Jones. Tackling the awkward squad: monadic
input/output, concurrency, exceptions, and foreign-
language calls in Haskell. Engineering theories of
software construction, Marktoberdorf Summer School,
pages 47–96, 2000.

[21] P. J. H. King. Ambiguity in limited entry decision
tables. Commun. ACM, 11(10):680–684, 1968.

[22] H. Kirk. Use of Decision Tables in Computer Program-
ming. Communications of the ACM, 8(1):41–43, 1965.

[23] V. Kuncak and M. Rinard. Decision procedures for set-
valued fields. 1st International Workshop on Abstract
Interpretation of Object-Oriented Languages (AIOOL
2005), 2005.

[24] N. G. Leveson. Intent specifications: An approach
to building human-centered specifications. Software
Engineering, 26(1):15–35, 2000.

[25] LogicGem 3.0 QuickStart. URL http:
//www.catalyst.com/products/logicgem/
quickstart.pdf.

[26] A. Löh and R. Hinze. Open data types and open func-
tions. Proceedings of the 8th ACM SIGPLAN sym-
posium on Principles and practice of declarative pro-
gramming, pages 133–144, 2006.

[27] T. Millstein. Practical predicate dispatch. Proceed-
ings of the 19th annual ACM SIGPLAN Conference on
Object-oriented programming, systems, languages, and
applications, pages 345–364, 2004.

[28] D. A. Moon. Object-oriented programming with fla-
vors. In OOPLSA ’86: Conference proceedings on
Object-oriented programming systems, languages and
applications, pages 1–8, New York, NY, USA, 1986.
ACM Press.

[29] B. Myers. Taxonomies of Visual Programming and
Program Visualization. Journal of Visual Languages
and Computing, 1(1):97–123, 1990.

[30] I. Nassi and B. Shneiderman. Flowchart techniques for
structured programming. SIGPLAN Not., 8(8):12–26,
1973.

[31] J. Pane and B. Myers. Tabular and Textual Methods
for Selecting Objects from a Group. Proceedings of VL
2000: IEEE International Symposium on Visual Lan-
guages, pages 157–164, 2000.

[32] J. Pane and B. Myers. Usability Issues in the De-
sign of Novice Programming Systems. Technical Re-
port CMU-CS-96-132, School of Computer Science,
Carnegie Mellon University, August 1996.

[33] S. Pollack. Analysis of the Decision Rules in Decision
Tables. Technical Report RM-3669-PR, Rand Corp,
1963.

[34] U. Pooch. Translation of Decision Tables. ACM Com-
puting Surveys (CSUR), 6(2):125–151, 1974.

[35] W. Quine. The Problem of Simplifying Truth Func-
tions. The American Mathematical Monthly, 59(8):
521–531, 1952.

[36] B. Silberg. Detab/65 in third-generation cobol. SIG-
PLAN Not., 6(8):4–8, 1971.

[37] StateStep Tutorial. URL http://statestep.com/
tutorial/RuleInitial.html.

[38] R. F. Sterbenz. Tabsol decision table preprocessor.
SIGPLAN Not., 6(8):33–40, 1971.

[39] D. Thomas. Agile Programming: Design to Accommo-
date Change. IEEE Software, 22(3):14–16, 2005.

[40] A. M. Turing. (1946) Proposed Electronic Calculator,
report for National Physical Laboratory, Teddington. In
A. M. Turing’s ACE Report of 1946 and Other Papers.
MIT Press, 1986.

[41] I. Vessey and R. Weber. Structured Tools and Con-
ditional Logic: an Empirical Investigation. Communi-
cations of the ACM, 29(1):48–57, 1986.

[42] P. Wadler. Comprehending monads. Proceedings of
the 1990 ACM conference on LISP and functional pro-
gramming, pages 61–78, 1990.

Credit limit OK Y N N N

Pay experience favorable – Y N N

Special clearance obtained – – Y N

Do approve order X X X

Don't approve order X

Figure 1. Decision table.

a

b

x 1 2

n

boolean a, b;

int x;

if (a & b) {

x = 1;

} else {

x = 2;

}

ny

y

predicatesvariables

values

Figure 2. Schematic decision table.

boolean a, b;

int x;

if (a & b) {

x = 1;

}

if (!a | !b) {

x = 2;

}

a

b

x 2

a

b

x 2

a

n

y

a

b

x 2

y

y

1

a

b

x 1 2

n

ny

y

calculated complementediting a predicate editing a value

boolean a, b, c;

int x;

if (a) {

x = 1;

} else if (b | c) {

x = 2;

} else {

x = 3;

}

a

b

x 1 2 3

c

y

y

y

n

n

n

Figure 5.

a

b

x 1 2 3

c

y

y

y

n

n

n

n a

b

x 1 2 3

c

y

y

n

n

n

y

y

y

y

yn

n n

n

n

y

y

a

b

x 1 2 3

c

y

y

n n

n

n

y

yn

n n

n

y

tentatively

added case

tentatively

deleted cases

tentatively

added case

tentatively

deleted cases

Figure 4. Logical editing.

(a) (b) (c) (d)

Figure 3. Java decision table.

Figure 6. Transactional editing.

(a) (b) (c)

boolean a, b, c;

int x;

if (a & (!b | !c)) {

x = 1;

} else if ((!a & b & !c)

| (!a & !b & c)) {

x = 2;

} else {

x = 3;

}

Figure 7.

static int fibonacci(int n) {

assert (n >= 0);

if (n == 0) return 0;

if (n == 1) return 1;

return fibonacci(n-1)

+ fibonacci(n-2);

}

Figure 8. Java Fibonacci.

fibonacci

in:

out=

Int
0 1

0 1

+

fibonacci

fibonacci

in – 1

in – 2

2=2

=0

=1

=1

=0

=1

=1

Int

0

0

execution

value

execution

values

true

predicate

(green)

false

columns

(gray)

false predicates

(gray) true

column

satisified

types

(green)

satisfied

assertions

(green)

fnc foo: bar=

out

in with foo

bar

fibonacci

in:

out=

Int
0 1

0 1

+

fibonacci

fibonacci

in – 1

in – 2

2

Int

0

0

input

variable

output

variable

types

assertions

predicates

values

function

tree

Figure 11. Live code.Figure 9. Schematic Fibonacci. Figure 10. Key.

Subtext

fibonacci

in:

out=

0 1

0 1

+

fibonacci

fibonacci

in – 1

in – 2

2=2

=0

=1

=1

=0

=1

=1

fibonacci

in:

out=

0 1

0 1

+

fibonacci

fibonacci

in – 1

in – 2

2=1

fibonacci

in:

out=

0 1

0 1

+

fibonacci

fibonacci

in – 1

in – 2

2=0

Int

Int

0

0

Int

Int

0

0

Int

Int

0

0

Figure 12. Laminar browsing.

enum Attack {MELEE, MAGICAL};

double hitPoints(Attack attack,

Character attacker,

Character target) {

double power;

double effectiveness;

double hitPoints;

switch (attack) {

case MELEE:

power = attacker.strength;

break;

case MAGICAL:

power = attacker.magic;

break;

}

effectiveness = power * (attacker.amulet ? .8 : random());

switch (attack) {

case MELEE:

if (effectiveness >= target.armor) {

hitPoints = effectiveness – target.armor;

} else {

hitPoints = 0;

}

break;

case MAGICAL:

hitPoints = effectiveness * (1 – target.magic);

break;

}

return hitPoints;

}

Figure 13. Java hitPoints.

attack:

attacker:

target:

Attack

Character

Character

hit points

magical

0

0

amulet y/n y n

.8

0

attacker
.magic

attacker
.strength

target
.armor

1
target
.magic

?out=

random

Rational

=melee

=y

melee

=.5

=.4

=.1

=.1

power

effectiveness

Figure 14. Schematic hit points.

attack:

attacker:

target:

Attack

Character

Character

hit points

amulet y/n y n

.8

attacker
.magic

1
target
.magic

out=

random

Rational

magical
restriction

predicate

power

effectiveness

Figure 15. Restriction.

attack:

attacker:

target:

Attack

Character

Character

hit points

magical

0

0

amulet y/n y n

.8

0

attacker
.magic

attacker
.strength

target
.armor

1
target
.magic

?out=

random

Rational

melee

!

ranged

type
error

new column

missing

value

power

effectiveness

Figure 16. Adding ranged to enum.

attack:

attacker:

target:

Attack

Character

Character

hit points

magical

0

0

amulet y/n y n

.8

0

attacker
.magic

attacker
.strength

target
.armor

1
target
.magic

?out=

random

Rational

melee, ranged

!

rangedmelee

new columnmerged column

missing
value

type

error

power

effectiveness

Figure 17. Merging columns.

attack:

attacker:

target:

Attack

Character

Character

hit points

magical

0

0

amulet y/n y n

.8

0

attacker
.magic

attacker
.strength

target
.armor

1
target
.magic

?out=

random

Rational

melee, ranged rangedmelee

attacker
.acuity

power

effectiveness

Figure 18. Final version.

abstract class Attack {

abstract double power(Character attacker);

double effectiveness(Character attacker) {

return power(attacker) * (attacker.amulet ? .8 : random();

}

abstract double hitPoints(Character attacker, Character target);

}

class Melee extends Attack {

double power(Character attacker) {

return attacker.strength;

}

double hitPoints(Character attacker, Character target) {

double theEffectiveness = effectiveness(attacker);

if (theEffectiveness >= target.armor) {

return theEffectiveness – target.armor;

}

return 0;

}

}

class Magical extends Attack {

double power(Character attacker) {

return attacker.magic;

}

double hitPoints(Character attacker, Character target) {

return effectiveness(attacker) * (1 – target.magic);

}

}

Figure 19. Polymorphic Java.

attack:

attacker:

target:

Attack

Character

Character

hit points

Magical

0

0

amulet y/n y n

.8

0

attacker
.magic

attacker
.strength

target
.armor

1
target
.magic

?out=

random

Rational

Melee

power

effectiveness

Figure 20. Polymorphic table.

attack

attacker

target

Attack

Character

Character

Magical

hit points
attack: attack
attacker: attacker
target: target

attack:

attacker:

target:

Attack

Character

Character

hit points

amulet y/n y n

.8

attacker
.magic

1
target
.magic

out=

random

Rational

Magical

power

effectiveness

Figure 21. Contextual restriction.

abstract class Attack {

abstract double power(Character attacker);

double effectiveness(Character attacker) {

return power(attacker)

* (attacker.amulet ? .8 : random();

}

abstract double hitPoints(Character attacker,

Character target);

}

abstract class Physical extends Attack {

double power(Character attacker) {

return attacker.strength;

}

double hitPoints(Character attacker,

Character target) {

double theEffectiveness = effectiveness(attacker);

if (theEffectiveness >= target.armor) {

return theEffectiveness – target.armor;

}

return 0;

}

}

class Magical extends Attack {

double power(Character attacker) {

return attacker.magic;

}

double hitPoints(Character attacker,

Character target) {

return effectiveness(attacker)

* (1 – target.magic);

}

}

class Melee extends Physical {

}

class Ranged extends Physical {

double power(Character attacker) {

return attacker.acuity;

}

}

Figure 22. Restructured classes.

attack:

attacker:

target:

Attack

Character

Character

hit points

Magical

0

0

amulet y/n y n

.8

0

attacker
.magic

attacker
.strength

target
.armor

1
target
.magic

?out=

random

Melee

Physical

Rational !

Melee

power

effectiveness

Figure 23. Result of restructuring classes.

attack:

attacker:

target:

Attack

Character

Character

hit points

Magical

0

0

amulet y/n y n

.8

0

attacker
.magic

attacker
.strength

target
.armor

1
target
.magic

?out=

random

Rational

Physical

power

effectiveness

Figure 24. Merging cases.

attack:

attacker:

target:

Attack

Character

Character

hit points

0

0

amulet y/n y n

.8

0

attacker
.strength

target
.armor

?out=

random

Rational

Physical Ranged

attacker.acuity

restriction predicate

overriding

edit

power

effectiveness

Figure 25. Overriding from a restriction.

attack:

attacker:

target:

Attack

Character

Character

hit points

0

0

amulet y/n y n

.8

0

attacker
.strength

target
.armor

?out=

random

Rational

attacker
.acuity

Ranged Ranged

Physical

power

effectiveness

Figure 26. Restriction on superclass.

in:

a:

b:

out=

H

y/n

y/n n

I

J

in G

y

void F(boolean a,

boolean b) {

G();

if (a) {

H();

if (b) {

I();

J();

}

}

}

F

ny

Figure 27. Untangling time and logic.

in:

a:

b:

out=

H

y/n

y/n n

I

J

in G

y

F

drag and drop

void F(boolean a,

boolean b) {

G();

if (a) {

H();

}

I();

if (a & b) {

I();

J();

}

}

}

in:

a:

b:

out=

H

y/n

y/n n

I

J

in G

y

F

nn yy

(a) (b) (c)

Figure 28. Changing logic while preserving execution order.

