
Interaction vs. Abstraction: Managed Copy and Paste
Jonathan Edwards

jonathanmedwards@gmail.com
Independent
Boston, USA

Tomas Petricek
tomas@tomasp.net
Charles University

Prague, CZ

Abstract
Abstraction is at the core of programming, but it has a
cost. We exhort programmers to use proper abstractions
like functions but they often find it easier to copy & paste
instead. Copy & paste is roundly criticized because subse-
quent changes to copies may have to be manually reconciled,
which is easily overlooked and easily mistaken. It seems
there is a conflict between the generality and reusability of
abstraction with the simplicity of copying and modifying
code.
We suggest that this conflict arises because we are still

thinking in terms of paper-based notations. Indeed the term
“copy & paste” originates from the practice of physically
cutting and gluing slips of paper. But an interactive program-
ming environment can free us from the limitations of paper.
We propose managed copy & paste, in which the program-
ming environment records copy & paste operations, along
with structural edit operations, so that it can track the dif-
ferences between copies and reconcile them on command.
These capabilities mitigate the aforementioned problems of
copy & paste, allowing abstraction to be deferred or reduced.
Managed copy & paste resembles version control as in

git, except that it works not between versions of a program
but between copies within the program. It is based on a
new theory of structural editing and version control that
offers precise differencing based on edit history rather than
the heuristic differencing of textual version control. We in-
formally explain this theory and demonstrate a prototype
implementation of a data science notebook. Lastly, we sug-
gest further mechanisms of gradual abstraction that could
be provided by the programming environment to lessen the
cognitive load of programming.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PAINT ’22, December 05, 2022, Auckland, New Zealand
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9910-4/22/12. . . $15.00
https://doi.org/10.1145/3563836.3568723

CCS Concepts: • Software and its engineering → In-
tegrated and visual development environments; Soft-
ware configuration management and version control
systems; Software maintenance tools.

Keywords: code clones, copy & paste, structure editing, ver-
sion control
ACM Reference Format:
Jonathan Edwards and Tomas Petricek. 2022. Interaction vs. Ab-
straction: Managed Copy and Paste. In Proceedings of the 1st ACM
SIGPLAN International Workshop on Programming Abstractions and
Interactive Notations, Tools, and Environments (PAINT ’22), December
05, 2022, Auckland, New Zealand.ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3563836.3568723

1 Introduction
It is widely held that the essence of programming is abstrac-
tion, and that a primary way to express such abstractions is
with functions. In his Turing Award lecture Dijkstra [8] said
“the notion of the closed subroutine is . . . one of the greatest
software inventions . . . because it caters for the implementa-
tion of one of our basic patterns of abstraction.” Pierce [32]
says “Each significant piece of functionality in a program
should be implemented in just one place in the source code.
Where similar functions are carried out by distinct pieces of
code, it is generally beneficial to combine them into one by
abstracting out the varying parts.”
However practitioners have found that abstractions are

often uncertain at first and can change significantly as a
design space becomes better understood, leading to wasteful
code churn. Therefore many adopt pragmatic guidelines like
the “Rule of Three” [15], stated by Grolemund and Wickham
[18] as: “You should consider writing a function whenever
you’ve copied and pasted a block of code more than twice”.
Note that quote is on page 269 – no functions needed to be
defined earlier. In contrast, the first chapter of SICP [2] is
Building Abstractions with Functions. This divergence reveals
a disagreement between theory and practice about the role
of abstraction.

We are faced with a dilemma: premature abstraction leads
to wasted effort, but the absence of abstraction makes code
harder to understand and maintain. Grolemund and Wick-
ham [18] say:

Writing a function has three big advantages over
using copy-and-paste:
• You can give a function an evocative name
that makes your code easier to understand.

https://orcid.org/0000-0003-1958-7967
https://orcid.org/0000-0002-7242-2208
https://doi.org/10.1145/3563836.3568723
https://doi.org/10.1145/3563836.3568723

PAINT ’22, December 05, 2022, Auckland, New Zealand Jonathan Edwards and Tomas Petricek

• As requirements change, you only need to up-
date code in one place, instead of many.

• You eliminate the chance of making incidental
mistakes when you copy and paste (i.e., updat-
ing a variable name in one place, but not in
another).

We observe that the second of these three problems, need-
ing to duplicate edits in copies, stems from the fact that
plain text does not know about copying. We propose to
provide a smarter editing experience with structure edit-
ing [3, 30, 34, 39]. Our editor records high-level program
transformations, like inserting a function call or rebinding a
variable reference or renaming a definition. The editor also
tracks copy & paste operations so that it can show the differ-
ences arising between such copies, and propagate changes
between them on command. The programmer can thus “up-
date code in one place” and then propagate those changes
semi-automatically. This capability offers a compromise be-
tween full abstraction and passive copying. We call it man-
aged copy & paste.

Managed copy & paste depends upon our earlier work on
a theory of structural version control [13, 14]. That theory
showed how version control capabilities as in git could be
provided in terms of structure edits, benefiting from more
accurate capture of programmer intent and a simpler model
of change. The technical contribution of this paper is to ex-
tend structural version control so that instead of comparing
versions of a program it compares substructures within a
single version of a program. Copying can be thus be treated
as creating internal versions of regions of code. Our other
contribution is to accordingly extend the UI for side-by-side
comparison and migration of changes to manage internal
copies as well. We will start with a walk through the UI in the
next section and describe the underlying theory afterwards.

Figure 1. loading and filtering data with Python and Pandas

2 Walk through Managed Copy & Paste
In this section we walk through a usage scenario with screen-
shots from our prototype implementation. This scenario is
based on a true story: analyzing transportation accident data
in Histogram[31]. Figure 1 shows the result of loading a
CSV table of railroad accident data and applying two fil-
ters to it. The UI resembles a conventional data notebook
like Jupyter with cells of code (in a subset of Python) fol-
lowed by their values (showing the first five rows of a ta-
ble). The rail_ps cell filters the table using the Pandas li-
brary idiom of Boolean vectors created by expressions like
rail['unit'] == 'THS_PAS'. We will call such expressions
predicates.

Figure 2. copying rail into avia

We want to compare railroad accidents to aviation acci-
dents, which are in a somewhat similarly structured CSV file.
We copy the rail cell, naming it avia and changing the file
name, resulting in Figure 2. To save space, we have turned
off cell values in this figure and subsequent ones. We also
will not discuss the user interface for performing edits – our
prototype uses a command line as a makeshift substitute for
a proper direct-manipulation UI.
Notice the © symbol at the beginning of the avia cell,

which indicates that it is a copy. Clicking on it selects that
cell by outlining it in green, and indicates that the rail cell
is the source of the copy by outlining it in yellow, as shown
in Figure 3.

We can see the differences between the copy and its source
by double clicking the ©, producing Figure 4, which shows
the source of the copy aligned on the left. The filename
'data/avia_clean.csv' is highlighted in blue on the right,
indicating that it was changed in the copy. This side-by-
side view is similar to that provided in many version control
systems like git, except that we are comparing regions within
a file rather than two versions of a file. In general both sides
of a copy can show changes, with changed values in blue,
insertions in green, and deletions in red. Note that this view
is unlike common textual tools because it shows changes at
the level of expressions, not by comparing lines of text. Thus
the rail= on the left is not a difference from the avia= on the
right because they are outside the expressions being copied.
Likewise the filename is marked as having been entirely
changed even through the leading text 'data/ is the same.
The left-pointing triangle at the beginning of the right

hand side is a button that will migrate the changes on the
right hand side to the left. When there are changes on the

Interaction vs. Abstraction: Managed Copy and Paste PAINT ’22, December 05, 2022, Auckland, New Zealand

Figure 3. Showing that avia was copied from rail

Figure 4. Differences between a copy and its source

left there will be a converse right-pointing triangle. We will
return to migration later.
Next we want to filter the new table somewhat like the

first. As usual the easiest way to do this is to copy code and
modify it. Figure 5 shows the result of making a copy of the
rail_ps cell, naming it avia_ps, changing all references to
rail to be avia. We also modify the first filter predicate to
test a different column for a different value. All these changes
to the copy are highlighted in blue on the right.

When there are multiple changes on a single line like this,
it can be useful to zoom into a finger-grained view, shown in
Figure 6. To produce this viewwe double clicked on avia_ps,
which expanded the cell into an indented outline of sub-cells
revealing the parse tree of the expression, breaking out each
operation or grouping onto its own line.1 Because we are
displaying rail_ps on the left it is also expanded so that
each line aligns properly with the corresponding one within
avia_ps. For consistency the source location of rail_ps
highlighted in yellow above is also expanded.
This expanded view spreads the changes shown in blue

onto separate lines, and presents a migration triangle for
each of them, so that they can be individually cherry picked.
Another advantage of the expanded view is that the interme-
diate execution value of the subexpression on each expanded
line can be shown underneath it to assist in comprehension
and debugging. That is beyond the topic of this paper so
we have hidden these intermediate values in the interest of
simplicity.

Now copying and pasting is easy and fun, but eventually
the bill comes due. Say we discover that we want to filter out
rows where geo == EU28, and we want to do that on both
tables. Normally at this point we would have to make those
changes twice, but this is wheremanaged copy& paste shows
its worth. We start by adding a new predicate to the rail_ps
cell. True to form we take the easy way by copying the prior
predicate and changing 'EU27' to be 'EU28'. Figure 7 shows

1More precisely, we double clicked on the second avia, which is now se-
lected inside the green box. The expression tree was expanded down to that
node and its siblings. The sibling subexpressions on the following three
lines could be further expanded by double clicking within them.

the result, with the newly copied predicate outlined in green
and the source of the copy in yellow.
Note that the © symbol on the avia_ps cell has now

turned red. This indicates that there have been changes made
to the source of the copy.2 We consider the red © to be a
sort of automatic FIXME comment, flagging that the source
has changed, which is the main risk of copy & paste pro-
gramming. To investigate further we double click on the
©, producing Figure 8. That looks like Figure 5, except on
the left side we see the EU28 filter predicate highighted in
green, indicating that it was inserted. Now we can click on
the right-pointing triangle to migrate that change into the
copy, the result of which is Figure 9.
That one click replicated the EU28 filter predicate into

avia_ps, but we see that the © symbol in front if it is red.
That is a flag that there is still some inconsistency, so we
click it to investigate, producing Figure 10. That reveals the
EU28 predicate is a copy of the preceding EU27 predicate.
That is a copy of the copy in Figure 7 when we first created
the EU28 predicate. When we migrated that change from
rail_ps to avia_ps, the internal copying got itself copied.
Figure 11 diagrams how these copies relate. We call this
higher order copying[12]. Now the red © is telling us there is
something wrong about the copied copy, so we double click
to investigate further, producing Figure 12.
We see that EU28 was changed from EU27, which is ex-

pected, but we also see that rail on the right was changed
to avia on the left. That’s a bug. The problem is that when
we migrated the EU28 predicate from rail_ps it carried
along a reference to the rail table, whereas we changed the
other references in avia_ps from rail to avia. This is the
sort of “incidental mistake” that was described as the third
problem of copy & paste in the Wickham quote from the
introduction. The mistake is being automatically detected as
an inconsistency in the copied copy. We can fix this mistake
by migrating the avia change, resulting finally in Figure 13.

We hope that this narrative shows the potential benefits of
managed copy & paste: that by tracking copying and editing

2More precisely, the red © indicates there are changes to the source that
aren‘t masked by conflicting changes to the copy.

PAINT ’22, December 05, 2022, Auckland, New Zealand Jonathan Edwards and Tomas Petricek

Figure 5. Copying rail_ps into avia_ps

Figure 6. Expanded view

Figure 7. Adding a new filter predicate by copying

Figure 8. Changes subsequently made to the source of a copy

Figure 9. Migrating changes in the source into the copy

Figure 10. Copy of a copy

Interaction vs. Abstraction: Managed Copy and Paste PAINT ’22, December 05, 2022, Auckland, New Zealand

rail_ps = rail[(rail['unit'] == 'THS_PAS') & (rail['geo'] != 'EU27') © & (rail['geo'] != 'EU28')]

avia_ps = © avia[(avia['tra_meas'] == 'CHF_PAS') & (avia['geo'] != 'EU27') © & (rail['geo'] != 'EU28')]

Figure 11. Higher order copying

Figure 12. Comparing the copy of a copy to its source

Figure 13. Migration complete

operations at a high level we can detect and help correct
programming errors commonly associated with copying.

3 Internal Version Control with Structure
Editing

In this section we will informally explain our theory of ver-
sion control with stucture editing [13, 14] and howwe extend
it to do internal version control between copies. In our sys-
tem a program is a tree, like the AST produced by a compiler,
but designed for direct structural editing by the user rather
than as an intermediate representation in a compiler.
Figure 14.1 shows two programs 𝐴 and 𝐵 and their edit

histories. These programswill typically be variants diverging
after one was copied from another, but we do not assume that.
Textual version control systems like git depend on finding a
previously existing common ancestor of the two versions to
serve as the basis for 3-way comparison, but that is only an
approximation. Versions may happen to evolve in parallel,

and changes may be migrated from one to the other (called
cherry picking in git).
Instead of depending on finding a common ancestor we

compute an optimal one. In Figure 14.2 we calculate 𝐴&𝐵,
the maximal agreement between the programs, generating
two histories of differences forking from the agreement to
match the two programs. The agreement serves as the basis
for 3-way comparison [24]. It is maximal in the sense that
all of the differences can be migrated to the other side and
will actually make a difference. We will skip the details of
how the agreement is calculated because it is essentially an
iteration of the migration algorithm described below.
We base version control on selecting sets of edits to mi-

grate from one side of the differences to the other. Figure
14.3 shows migrating the last difference of 𝐴 to 𝐵. Since the
agreeement is maximal we know this makes a new version
of 𝐵 called 𝐵′, which also adjusts the agreement to be 𝐴&𝐵′.
As an edit is migrated through the differences they may
be adjusted along the way so that they correctly express

PAINT ’22, December 05, 2022, Auckland, New Zealand Jonathan Edwards and Tomas Petricek

BAprogram

edit history

(A&B)
differences differencesagreement

A B

(A&B)A B (A&B)

adjusted differences adjusted differences

A B

B’(A&B’) B’(A&B’)A

1. Edit history of two programs 2. Calculating maximum agreement

3. Migrating a difference from A to B 4. Migration adjusts differences

Figure 14. Version control with structure editing

differences relative to the new agreement, as shown in the
bottom row of arrows in 14.4. Note that the migrated edit has
been removed from the differences: migration monotonically
decreases differences, eventually converging on two equal
programs. However the order in which migration occurs can
change the outcome, determining which side wins when ed-
its conflict. The abovr informal narratie is made more precise
in Edwards and Petricek [13].

With this background we can now explain how to extend
structural version control to work between copies within a
single version of a program. We start in Figure 15.1 with the
edit history of a program. Say that subtree 𝑃 within the pro-
gram tree was copied to subtree 𝑄 . Figure 15.2 shows three
programs derived analogously to an agreement between two
programs. The agreement is replaced with the separation
𝑃 −∨ 𝑄 (𝑃 nor 𝑄) containing all edits that are not within 𝑃

or 𝑄 and all pairs of equivalent edits within the subtrees of
𝑃 and 𝑄 . Equivalency is defined by mapping subtree paths
within 𝑃 and 𝑄 . 𝑃 and 𝑄 are equivalent in the separation.
Forking from the separation are two histories of edits that
create the differences between 𝑃 and 𝑄 . The separation of 𝑃

and 𝑄 serves like the agreement 𝐴&𝐵 as the “ancestor” for a
3-way comparison of the differences.
Migration is analogously generalized from the cross pro-

gram case. In Figure 15.3 migrating a difference in 𝑃 to 𝑄

adds two edits to the separation: an edit corresponding to the
𝑃 edit and an equivalent edit copied to 𝑄 by mapping tree
paths 𝑃 ↦→ 𝑄 . The mapped edit is then migrated through to
𝑄 , generating 𝑄 ′.

Since internal versioning emulates the 3-way comparison
produced by cross-program versioning, the UI used for side-
by-side comparison and migration across versions adapted
relatively easily to work across copies within a program.
There is one nasty complication: the move edit, which

moves a subtree to a new location and deletes the source.
Moves involve two locations, so can be hard to separate. A
move from inside 𝑃 to inside𝑄 (or the inverse) is reported as
an error preventing separation, which seems acceptable be-
cause it violates our intuitions about copies. More troubling
are the realistic cases of moves into or out of the separate
subtrees from their outside. An incoming move is split into

Interaction vs. Abstraction: Managed Copy and Paste PAINT ’22, December 05, 2022, Auckland, New Zealand

(P⊽Q)
differences in P differences in Q

edits outside P and Q, 
pairs equivalent within P and Q

P Q (P⊽Q)P Q

Q’

(P⊽Q’)

1. Edit history of program 2. Separating differences between subtrees P and Q 3. Migrating a difference from P to Q

P⟼Qseparation

Figure 15. Internal version control

a deletion of the outside source in the separation and a se-
quence of edits recreating it in the differences. An outgoing
move is conversely split into a deletion in the differences
and recreation in the separation.

4 Discussion
Even at this early stage we can reflect upon the apparent
benefits and disadvantages of our proposals. On the posi-
tive side, our theory of version control for structure editing
has succesfully been extended to support internal version
control. It handles subtle issues like copies of copies in a
plausible manner. On the negative side, the user interface
can feel complicated. To make code look familiar a lot of
information is being hidden, and revealing that information
quickly gets complicated. Further refinement of the UI would
help, but this problem gives us pause. In offloading the cog-
nitive burden of abstraction have we just replaced it with a
different kind of difficulty?

Data on the use of refactoring tools [28] is not encouraging:
renaming alone accounts for the vast majority of refactoring,
and more complex refactorings are often done manually,
foregoing the use of available tools. Even in our own example
narrative it sometimes felt like it would be easier to just
manually perform the needed edits than use our tools to
automate them. On the other hand, our expertise with textual
programming biases us, so experiments with non-experts
would be needed to fairly assess the matter.

The elephant in the paper is the dependence on structure
editing, which has a long and controversial history [3, 34, 39].
While there have been successes for beginning programmers
[26, 33] and domain-specific languages [37] it remains exper-
imental for general purpose programming [19, 30]. Structure
editing has inherent problems of hidden dependencies and
viscosity [4]. Professional programmers are deeply invested
in text editing and do version control based on heuristic
textual differencing [24]. We believed it necessary to accu-
rately capture high level operations like copying, moving,

and renaming, but perhaps heuristic text comparison could
be made good enough with sufficient effort, indeed our case
study in section 2 could probably be handled textually.

The startling ability of Copilot [17] to generate code com-
pletions raises the question of whether it couldn’t also sug-
gest changes to copies.

5 Related Work
There has been extensive research on clone detection [25] but
less on managing clones. Kapser and Godfrey [22] discuss
pragmatic reasons for cloning. Clone detection is typically
done by textual comparison, which limits its accuracy. There
have been attempts to extract more information by compar-
ing ASTs to make merging more precise [1, 27, 36]. Duala-
Ekoko and Robillard [11] continuously track clones during
editing and allow simultaneous editing of pairs of clones.
Linked editing [40] allows the programmer to identify clones
and simulataneously edit them.

Synchronous copy and paste [7] tracks and maintains equal-
ity of copies. It presents an outline view of all copies, which
might improve our UI. Copies can have text region holes
that vary across instances, with those variations tracked in
the outline view. These parametric copies can be used in
place of functional abstraction as well as aspect oriented
code adaptation.
Forms/3 [10] used similarity inheritance as a mechanism

for managing copying in spreadsheets, providing automatic
copying of changes from a source to its copies. Gridlets [21]
provide similar capabilities. Hermans and van Der Storm [20]
also track copying within spreadsheets but like our work
allow changes to be manually migrated in any direction.
Variolite[23] is closely aligned with our work. It was in-

formed by studies of data scientists confirming the common
use of informal internal version control techniques through
copying and commenting. Variolite allows a region of text to
be associated with multiple alternatives that can be chosen
from. These variant regions can be nested within each other,

PAINT ’22, December 05, 2022, Auckland, New Zealand Jonathan Edwards and Tomas Petricek

and their alternatives can be coordinated by tagging with
named branches. Our work is in a sense orthogonal, explor-
ing the spatial dimension rather than time. Variolite subsi-
tutes alternatives in place at different times, while we capture
copying and variation between different places within the
same version.

6 Research Vision
“The effective exploitation of his powers of ab-
straction must be regarded as one of the most
vital activities of a competent programmer.” –
Edsger W. Dijkstra
“One can’t proceed from the informal to the for-
mal by formal means.” – Alan Perlis

Managed copy & paste can defer abstraction by providing
interactive assistance for copy maintenance, but eventually
there will be situations where abstraction into functions is
called for. A key benefit of functions is to isolate and name
key concepts. The logical next step in our research is to pro-
vide refactoring tools [15] to assist in function abstraction.
Narasimhan and Reichenbach [29] have explored this idea
with clone detection techniques. Because we have tracked
the network of copies and the variations between them, we
can parameterize these variations into functions. This refac-
toring need not occur all at once, but rather incrementally
parameterize specific call-site variations while leaving oth-
ers as the differences between copies of a function. When a
function turns out to be parameterized not quite right, we
would like to have the inverse refactoring: de-abstraction,
where parameters are moved back into code customizations
in a copy of the function, where it is easier to re-partition
those customizations before re-parameterize along different
lines.

We call this development process gradual abstraction. Tra-
ditional programming expects programmers to take large
mental leaps to transform code variation into abstract func-
tions. Instead we envision building abstractions via a series
of smaller steps with much more interactive assistance. Man-
aged copy & paste allows us to grow and maintain a pattern
of code variation. Refactoring then uses that latticework to
incrementally refine abstractions in small sound steps.
Managed copy & paste may also offer new alternatives

to traditional programming language modularity constructs.
Chiba et. al. [7] have also explored this idea. We observe that
traits [35], especially in their original proposed form, can be
seen as a set of edits that add, delete, and rename class mem-
bers. That is exactly how we track the differences between
copies. We believe that traits and other modularity mech-
anisms can be removed from the language semantics and
instead supplied by the programming environment through
managed copy & paste.

7 Conclusion
Our goal is to reimagine programming tools and languages in
order to offload the cognitive burden of programming. This
paper has prototyped one such tool, managed copy & paste,
targeted at reducing the cognitive burden of abstraction. We
follow in the philosophical footsteps of others who have ques-
tioned whether abstraction is detrimentally over-emphasised
in programming theory and practice [5, 6, 9, 16, 38]. We hope
to advance that discussion from criticising abstraction to of-
fering a concrete alternative.

References
[1] 2022. SemanticMerge. https://www.plasticscm.com/semanticmerge/

documentation/intro-guide/semanticmerge-intro-guide
[2] Harold Abelson and Gerald Jay Sussman. 2022. Structure and interpre-

tation of computer programs. MIT Press.
[3] D.R. Barstow, S.G. Guty, H.E. Shrobe, and E. Sandewall. 1984. Interactive

Programming Environments. McGraw-Hill, USA.
[4] Alan F. Blackwell, Carol Britton, Anna Louise Cox, Thomas R. G. Green,

Corin A. Gurr, Gada F. Kadoda, Maria Kutar, Martin Loomes, Chrysto-
pher L. Nehaniv, Marian Petre, Chris Roast, Chris Roe, Allan Wong,
and Richard M. Young. 2001. Cognitive Dimensions of Notations:
Design Tools for Cognitive Technology. In Proceedings of the 4th Inter-
national Conference on Cognitive Technology: Instruments of Mind (CT
’01). Springer-Verlag, Berlin, Heidelberg, 325–341.

[5] Alan F. Blackwell, Luke Church, and Thomas R. G. Green. 2008. The
Abstract is an Enemy: Alternative Perspectives to Computational
Thinking. In Proceedings of the 20th Annual Workshop of the Psychol-
ogy of Programming Interest Group, PPIG 2008, Lancaster, UK, Sep-
tember 10-12, 2008. Psychology of Programming Interest Group, 5.
https://ppig.org/papers/2008-ppig-20th-blackwell/

[6] Margaret Burnett, John Atwood, Rebecca Walpole Djang, James Re-
ichwein, Herkimer Gottfried, and Sherry Yang. 2001. Forms/3: A first-
order visual language to explore the boundaries of the spreadsheet
paradigm. Journal of Functional Programming 11, 2 (2001), 155–206.
https://doi.org/10.1017/S0956796800003828

[7] Shigeru Chiba, Michihiro Horie, Kei Kanazawa, Fuminobu Takeyama,
and Yuuki Teramoto. 2012. Do We Really Need to Extend Syntax for
Advanced Modularity?. In Proceedings of the 11th Annual International
Conference on Aspect-Oriented Software Development (Potsdam, Ger-
many) (AOSD ’12). Association for Computing Machinery, New York,
NY, USA, 95–106. https://doi.org/10.1145/2162049.2162061

[8] E.W. Dijkstra. 1972. The humble programmer [1972 ACM Turing
Award Lecture]. Commun. ACM 15, 10 (1972), 859–866. https://doi.
org/10.1145/355604.361591

[9] Andrea A. diSessa. 2018. Computational Literacy and “The Big Picture”
Concerning Computers in Mathematics Education. Mathematical
Thinking and Learning 20, 1 (2018), 3–31. https://doi.org/10.1080/
10986065.2018.1403544

[10] R.W. Djang and M.M. Burnett. 1998. Similarity inheritance: a new
model of inheritance for spreadsheet VPLs. In Proceedings. 1998 IEEE
Symposium on Visual Languages (Cat. No.98TB100254). 134–141. https:
//doi.org/10.1109/VL.1998.706156

[11] Ekwa Duala-Ekoko and Martin P Robillard. 2007. Tracking code clones
in evolving software. In 29th International Conference on Software
Engineering (ICSE’07). IEEE, 158–167.

[12] Jonathan Edwards. 2006. First Class Copy & Paste. Technical Report
MIT-CSAIL-TR-2006-037. MIT. http://hdl.handle.net/1721.1/32980

[13] Jonathan Edwards and Tomas Petricek. 2021. Typed Image-based
Programming with Structure Editing. https://doi.org/10.48550/ARXIV.
2110.08993 Presented at Human Aspects of Types and Reasoning

https://www.plasticscm.com/semanticmerge/documentation/intro-guide/semanticmerge-intro-guide
https://www.plasticscm.com/semanticmerge/documentation/intro-guide/semanticmerge-intro-guide
https://ppig.org/papers/2008-ppig-20th-blackwell/
https://doi.org/10.1017/S0956796800003828
https://doi.org/10.1145/2162049.2162061
https://doi.org/10.1145/355604.361591
https://doi.org/10.1145/355604.361591
https://doi.org/10.1080/10986065.2018.1403544
https://doi.org/10.1080/10986065.2018.1403544
https://doi.org/10.1109/VL.1998.706156
https://doi.org/10.1109/VL.1998.706156
http://hdl.handle.net/1721.1/32980
https://doi.org/10.48550/ARXIV.2110.08993
https://doi.org/10.48550/ARXIV.2110.08993

Interaction vs. Abstraction: Managed Copy and Paste PAINT ’22, December 05, 2022, Auckland, New Zealand

Assistants (HATRA’21), Oct 19, 2021, Chicago, USA.
[14] Jonathan Edwards and Tomas Petricek. 2021. Typed Image-based

Programming with Structure Editing. https://vimeo.com/631461226
[15] Martin Fowler. 1999. Refactoring (2 ed.). Addison Wesley, Boston, MA.
[16] Gabriel. 1998. Patterns of Software. Oxford University Press, New York,

NY, Chapter Abstraction Descant.
[17] GitHub. 2022. GitHub Copilot: Your AI pair programmer. https:

//copilot.github.com
[18] Garrett Grolemund and Hadley Wickham. 2017. R for Data Science.

O’Reilly Media, Sebastopol, CA.
[19] Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh. 2018. Deuce:

A Lightweight User Interface for Structured Editing. In Proceedings of
the 40th International Conference on Software Engineering (Gothenburg,
Sweden) (ICSE ’18). Association for Computing Machinery, New York,
NY, USA, 654–664. https://doi.org/10.1145/3180155.3180165

[20] Felienne Hermans and Tijs van Der Storm. 2015. Copy-Paste Tracking:
Fixing Spreadsheets Without Breaking Them. In ICLC 2015 - The first
International Conference on Live Coding. Leeds, United Kingdom. https:
//hal.inria.fr/hal-01261473

[21] Nima Joharizadeh, Advait Sarkar, Jack Williams, and Andy Gordon.
2020. Gridlets: Reusing Spreadsheet Grids. In 38th Annual ACM Con-
ference Extended Abstracts on Human Factors in Computing Systems
(CHI ’20 Extended Abstracts). ACM. https://www.microsoft.com/en-
us/research/publication/gridlets-reusing-spreadsheet-grids/

[22] Cory Kapser and Michael W. Godfrey. 2006. "Cloning Considered
Harmful" Considered Harmful. In 2006 13th Working Conference on
Reverse Engineering. 19–28. https://doi.org/10.1109/WCRE.2006.1

[23] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Sup-
porting Exploratory Programming by Data Scientists. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems
(Denver, Colorado, USA) (CHI ’17). Association for Computing Machin-
ery, New York, NY, USA, 1265–1276. https://doi.org/10.1145/3025453.
3025626

[24] Sanjeev Khanna, Keshav Kunal, and Benjamin C. Pierce. 2007. A
Formal Investigation of Diff3. In FSTTCS 2007: Foundations of Software
Technology and Theoretical Computer Science, V. Arvind and Sanjiva
Prasad (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 485–496.

[25] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. 2005.
An Empirical Study of Code Clone Genealogies. In Proceedings of the
10th European Software Engineering Conference Held Jointly with 13th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (Lisbon, Portugal) (ESEC/FSE-13). Association for Com-
puting Machinery, New York, NY, USA, 187–196. https://doi.org/10.
1145/1081706.1081737

[26] Michael Kölling, Neil C. C. Brown, and Amjad Altadmri. 2015. Frame-
Based Editing: Easing the Transition from Blocks to Text-Based Pro-
gramming. In Proceedings of the Workshop in Primary and Secondary
Computing Education (London, United Kingdom) (WiPSCE ’15). As-
sociation for Computing Machinery, New York, NY, USA, 29–38.
https://doi.org/10.1145/2818314.2818331

[27] Simon Larsen, Jean-Remy Falleri, Benoit Baudry, and Martin Mon-
perrus. 2022. Spork: Structured Merge for Java with Formatting
Preservation. IEEE Transactions on Software Engineering (2022), 1–
1. https://doi.org/10.1109/tse.2022.3143766

[28] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. 2012. How
We Refactor, and How We Know It. IEEE Transactions on Software
Engineering 38, 1 (2012), 5–18. https://doi.org/10.1109/TSE.2011.41

[29] Krishna Narasimhan and Christoph Reichenbach. 2015. Copy and
Paste Redeemed. In Proceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering (Lincoln, Nebraska)
(ASE ’15). IEEE Press, 630–640. https://doi.org/10.1109/ASE.2015.39

[30] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and
Matthew A. Hammer. 2017. Hazelnut: A Bidirectionally Typed Struc-
ture Editor Calculus. In 44th ACM SIGPLAN Symposium on Principles

of Programming Languages (POPL 2017).
[31] Tomas Petricek. 2019. Histogram: You have to know the past to un-

derstand the present. http://tomasp.net/histogram/
[32] Benjamin C Pierce. 2002. Types and Programming Languages. MIT

Press.
[33] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie

Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch:
Programming for All. Commun. ACM 52, 11 (Nov. 2009), 60–67.
https://doi.org/10.1145/1592761.1592779

[34] Erik Sandewall. 1978. Programming in an Interactive Environment:
The “Lisp” Experience. ACM Comput. Surv. 10, 1 (March 1978), 35–71.
https://doi.org/10.1145/356715.356719

[35] Nathanael Scharli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew
Black. 2003. Traits: Composable Units of Behaviour. Proceedings
ECOOP 2003 2743, 248–274.

[36] Bo Shen, Wei Zhang, Haiyan Zhao, Guangtai Liang, Zhi Jin, and Qianx-
iangWang. 2019. IntelliMerge: A Refactoring-Aware SoftwareMerging
Technique. Proc. ACM Program. Lang. 3, OOPSLA, Article 170 (oct
2019), 28 pages. https://doi.org/10.1145/3360596

[37] JetBrains s.r.o. 2021. MPS: The Domain-Specific Language Creator.
https://www.jetbrains.com/mps/

[38] Friedrich Steimann. 2018. Fatal Abstraction. In Proceedings of the 2018
ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Boston, MA, USA) (On-
ward! 2018). Association for Computing Machinery, New York, NY,
USA, 125–130. https://doi.org/10.1145/3276954.3276966

[39] Tim Teitelbaum and Thomas Reps. 1981. The Cornell Program Synthe-
sizer: A Syntax-Directed Programming Environment. Commun. ACM
24, 9 (Sept. 1981), 563–573. https://doi.org/10.1145/358746.358755

[40] Michael Toomim, Andrew Begel, and S.L. Graham. 2004. Managing
Duplicated Code with Linked Editing. 173–180. https://doi.org/10.
1109/VLHCC.2004.35

Received 2022-09-01; accepted 2022-10-02

https://vimeo.com/631461226
https://copilot.github.com
https://copilot.github.com
https://doi.org/10.1145/3180155.3180165
https://hal.inria.fr/hal-01261473
https://hal.inria.fr/hal-01261473
https://www.microsoft.com/en-us/research/publication/gridlets-reusing-spreadsheet-grids/
https://www.microsoft.com/en-us/research/publication/gridlets-reusing-spreadsheet-grids/
https://doi.org/10.1109/WCRE.2006.1
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1145/1081706.1081737
https://doi.org/10.1145/1081706.1081737
https://doi.org/10.1145/2818314.2818331
https://doi.org/10.1109/tse.2022.3143766
https://doi.org/10.1109/TSE.2011.41
https://doi.org/10.1109/ASE.2015.39
http://tomasp.net/histogram/
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/356715.356719
https://doi.org/10.1145/3360596
https://www.jetbrains.com/mps/
https://doi.org/10.1145/3276954.3276966
https://doi.org/10.1145/358746.358755
https://doi.org/10.1109/VLHCC.2004.35
https://doi.org/10.1109/VLHCC.2004.35

	Abstract
	1 Introduction
	2 Walk through Managed Copy & Paste
	3 Internal Version Control with Structure Editing
	4 Discussion
	5 Related Work
	6 Research Vision
	7 Conclusion
	References

